Synthesis of Hydroxyapatite Nanostructures Using Chemical Method

Marwa Abdul Muhsien Hassan, Asmaa Hadi Mohammed, Wahab Basim Mahdi

Views:1726

Abstract

In this research, hydroxyapatite was prepared from natural and industrial sources using a simple chemical method. The fish (scales and bones), snail shells, bovine bones, horse bones, egg shells, cuttlefish bones and crab shells are composed by crystals of calcium carbonate (94%), organic matter (4%), calcium phosphate (1%) and magnesium carbonate (1%). EDX data for derived HAp from natural sources at 600°C, 800°C, 900°C and 1100 °C, respectively. Based on the EDX signatures, the Ca/P weight ratio for derived HAp was calculated and was found to be 1.67 at 600°C, 800°C, 900°C and 1100 °C, respectively. In the present work, it was found that XRD 2θ positions of the (bones, scales and shells) samples calcined at 600 °C and 1100 °C shifted by total error of 0.056 and 0.031, respectively, thus indicating that the HAp lattice has contracted due to loss of OH radicals. The peak at 1026-1049 cm-1 (ν3) was attributed to triply degenerate asymmetric ν3(PO) stretching. The tetrahedral  internal mode (ν1) observed at 960 cm-1 represents the symmetric stretching of the P-O bond. The position of this peak represents the degree of crystallinity of the material and confirmed that the prepared HAp had highly crystallized nature.

PDF
Full Text

Nano Biomedicine and Engineering.

Copyright © Shanghai Jiao Tong University Press