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Abstract

The microfluidic polymerase chain reaction (PCR) chips have undergone extensive development and nowadays have become an important domain 
of miniaturization technology application. Here, we review the advances of microfluidic PCR chips over the past years, from the first single chamber 
stationary PCR chip to the new SlipChip PCR. First, the three distinct types of microfluidic PCR chips are discussed, including chamber stationary 
PCR chips, flow-through PCR chips and convection PCR chips. Then we focus on droplet PCR chips and SlipChip PCR. Although they are at an early 
stage, they show the great potential for high-throughput PCR and robust chip. Finally, general discussions on integrated chips are given. The low cost, 
portable, high-throughout integrated PCR chips will certainly be further developed in spite of many challenges. 
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1. Introduction

    Since micro total analysis system (μ-TAS), also 
known as ‘‘lab-on-a-chip’’ was proposed in the 
early 1990s [1], microfluidic chip manufactured by 
microelectromechanical system (MEMS) technology has 
been considered as a potential technology to miniaturize 
the conventional equipments and technologies. Because 
it offers advantages in terms of small volume, low cost, 
short reaction time, high throughput. It has already 
been used in chemical and biological analysis [2,3], cell 
analysis and clinical diagnostics [4-6] drug discovery 
[7], and environmental monitoring [8]. Among the 
microfluidic chips, the polymerase chain reaction 
(PCR) chip has become a very important tool in modern 
biology, biomedical research and related areas. The PCR 
technique was first developed in 1985 [9], and has been 
widely used as a molecular biological tool to replicate 
DNA by cycling through three temperature steps. After 
the first PCR chip was introduced by Northrup et al. [10], 
many research groups began to study microfluidic PCR 
chips and developments of microfluidic PCR chips were 
accelerated.

    This review surveys the development of different 
microfluidic PCR chips. We begin with the three distinct 
types of microfluidic PCR chips (chamber stationary PCR 
chips, flow-through PCR chips and thermal convection-
driven PCR chips). Next, we describe droplet PCR chips 
and SlipChip PCR with the great potential for high-

throughput PCR and robust chip. Finally, the potential 
and challenges about integrated PCR chips are discussed. 
As a supplement to this review, readers are referred to 
other reviews about microfluidic technology [11-14].

2. Types of microfluidic PCR chips

    During the development of microfluidic PCR chips, 
different types have been developed by many research 
groups. Currently, the microfluidic PCR chips can be 
classified into three distinct types: chamber stationary 
PCR chips, flow-through PCR chips and thermal 
convection-driven PCR chips.

2.1 Chamber stationary PCR chip

    The working principle of this type of PCR chip is that 
the PCR solution is kept stationary and the temperature 
of the reaction chamber is cycled between three different 
temperatures. In general, this type of chamber stationary 
PCR chips can be classified as single chamber [15-17] 
and multi-chamber [18-20] chips, as shown in Fig.1.

   The first PCR chip developed by Northrup et al. [10] 
was based on a chamber fabricated by silicon anisotropic 
wet etching, where the PCR solution is kept. Cady et al. 
[21] constructed the PCR amplification chamber using soft 
lithography techniques for polydimethylsiloxane (PDMS) 
and SU-8 photoresist tested for their ability to purify and 
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Fig. 2 Flow-through PCR chip [26]. Fig. 3 Photograph of the centrifugal microfluidic chip designed by 
Focke et al. [33].

detect the pathogeneic bacterium Listeria monocytogenes
Qiu et  al .  [22] developed a disposable,  plast ic 
microfluidic reactor with relatively large reaction volume 
(ranging from 10 μL to 100 μL) and used double-
sided heater to maintain temperature uniformity and a 
relatively fast temperature ramping rate. The fluidic and 
thermal controls can be performed very well. However, 
a single chamber is not suitable for some sequential 
PCR tests for a quantity of DNA samples. In order 
to solve this problem, multi-chamber stationary PCR 
chips was developed. Daniel et al. [23] fabricated some 
microchambers in silicon by bulk micromachining using 
anisotropic wet etching and integrated thin film platinum 
resistors as temperature sensors and heaters to amplify 
DNA. Multi-chamber PCR chip for multi-target sample 
amplification for diagnostic purposes was designed 
and fabricated by Trung et al. [24]. Silicon-based 
microchamber array was used to realize high-throughput 
PCR and PCR was completed in 18 min for 40 cycles [25].

    The multi-chamber stationary PCR chips can reduce the 
time for analysis and increase the PCR throughput because 
it can perform different sequential PCR tests concurrently. 
However, it is crucial to ensure temperature uniformity 
between chambers. The whole chip, including the sample, 
is heated and cooled through specific thermal-cycling 
temperatures. Therefore, chamber stationary PCR chips 

Fig. 1  Chamber stationary PCR chips: (a) Single chamber PCR chip.(.b) Multi-chamber PCR chip [12].

have high thermal inertia and long thermal-cycling time.

2.2 Flow-through PCR chip

    The working principle of this type of PCR chip is that 
the PCR solution is continuously and repeatedly flowing 
through three different temperature zones necessary for 
DNA amplification, as shown in Fig. 2. It takes advantage 
in term of rapid heat transfer and high potential for 
further integration. Kopp et al. successfully performed 
the polymerase chain reaction (PCR) in continuous flow 
at high speed using a micromachined chemical amplifier 
was successfully [26]. The device relied on the movement 
of sample through thermostated temperature zones on 
a glass microchip. Since then, flow-through PCR chips 
have undergone substantial improvements. In this chip, 
the flow control of the PCR solution is a key issue.

2.2.1 Pressure driven

    Pressure driven is commonly used by many research 
groups, which control fluid movement with different 
pressures applied by mechanical pumps or gas pressure. 
Liu et al. [27] developed a rotary microfluidic device 
to run the PCR in both spatially and temporally cycled 
formats. The small sample volume (12 nl) allows low 
power consumption, reduced reagent costs, and ultimately 
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Fig. 4 (a) Schematic drawing of the PCR microchip with heating blocks and a magnet, (b) Photograph of the PCR chip fabricated in PMMA [35].

more rapid thermal cycling. Wu and Lee [28] proposed 
a three-dimensional (3D) on-chip continuous-flow PCR, 
which adopted a single heating source to simplify the 
temperature control. 

2.2.2 Electrokinetic force driven

    Electrokinetic force driven is another important fluid 
control technique in microfluidic chips [29]. Patankar 
and Hu [30] developed a numerical scheme to simulate 
electroosmotic flows in complicated geometries and 
studied the electroosmotic injection characteristics of 
a cross-channel device for capillary electrophoresis. 
Gui and Ren [31] proposed a 3D model to simulate 
the electrical potential field, the flow field, and the 
temperature field in an electroosmosis-based continuous 
flow PCR chip.

2.2.3 Centrifugal force driven 

    Centrifugally force driven is an insightful example 
of the ingenious methods for fluid control which may 
be used in microfluidic chips. Instead of mechanical 
or electrokinetic pumps,  centrifugal  force  is  used  
which  moves  liquids inside circular disks containing 
all necessary microfluidic components for  chemical  
analysis.  Furutani  et  al.  [32] proposed  a  compact  disk  
(CD)-shaped chip  to  isolate Salmonella  enterica   cells  
and  detect  the  Salmonella-  specific  invA  gene  from  
isolated  cells  by  PCR.The centrifugal force was used 
to control liquid flow, without a micro-pump. Focke et 
al. [33]  developed a  centrifugal microfluidic chip and 
successfully and realized  efficient thermocycling during 
real-time PCR, as  shown in Fig. 3.

2.2.4 Magnetic field driven

    In this chip, a small ferrofluid plug is controlled by an 
external magnet, which in turn propels the PCR solution 
through three temperature zones. Sun et al. [34] presented 
a novel circular close-loop ferrofluid microfluidic chip for 

rapid PCR and successfully demonstrated by performing 
PCR amplification of a 500 bp lambda DNA fragment 
and a 16-loci forensic DNA sample. Then they amplified 
the genetically modified soya and maize in less than 13 
min for the detection of genetically modified organisms 
(GMOs) in food products using PCR technology, as 
shown in Fig. 4 [35].
    The high thermal inertia has been dramatically 
shortened by flow-through PCR chips. However, 
PCR inhibition and contamination become the major 
challenges due to high surface/volume ratio [36, 37].

2.3 Convection PCR chip

    The working principle of convection PCR chip 
is Rayleigh-Bénard convection, which is caused by 
buoyancy-driven instability in a confined fluid layer 
heated. This convection PCR chips consist of two fixed 
different temperature zones. Buoyancy force is the only 
force to drive PCR solution flow through the temperature 
zones. 

    Krishnan et al. [38] reported a PCR convection system 
to perform PCR amplification of DNA inside a 35-μL 
cylindrical cavity. The temperature cycling was generated 
as the flow continuously shuttles fluid vertically through 
the two temperature zones of denaturation (97°C) and 
annealing/extension (61°C). Yao et al. [39] designed a 
micro-PCR system that integrated measurement circuits, 
and circuits to control the temperature. They optimized 
the stream function, velocity, and temperature profile 
through simulation and found the minimum reaction 
duration as a function of the velocity, temperature 
distribution, and extension time for a specific aspect ratio 
of the convection cavity. Chung et al. [40] presented 
a standalone portable convection PCR chip which can 
conduct multiple PCR in a very short time (about 5 min). 
Natural convection drove PCR reactants to circulate along 
a closed loop channel in the polymer chip, as shown in 
Fig. 5. Convection PCR is predicted to be a promising 
method due to its low cost, simplicity, high speed and low 
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power consumption [41, 42]. And challenges still exist in 
realization of parallel and multiplex convective PCR and 
integration of convective PCR with other functionalities.

3. Droplet PCR chip

    In order to prevent PCR inhibition and contamination, 
some researchers use surface modification method [43-
45]. Schneegass et al. [43] modified the channel surface 
with hexamethyldisilazane (HMDS) before the injection 
of the PCR solution, so the hydrophobic material surface 
of the silicon/glass was changed to enhance surface 
biocompatibility. However, this method is not easy to 
manipulate in the sealed chip. Fortunately, the PCR 
inhibition and contamination can be overcome by using 
droplet PCR chip. In general, droplets are typically 
generated using three main generation strategies: 
capillary, T-junction and flow focusing, as shown in Fig. 6 
[46]. In droplet PCR chip, the PCR solution (water phase) 
within the droplets are surrounded by an immiscible fluid 
(oil phase), so the inhibition and contamination result 
from contact between chambers and the sample is avoid. 
In addition, The PCR solution contained in droplets can 
decrease its evaporation, which is a common problem 
in single-phase chips. Unlike in single-phase chips, 
each independent droplet in droplet PCR chips likes a 
microreactor which can be individually transported, split, 
mixed, sorted and analyzed [46-53].

    Pipper et al. [54] used magnetic force to manipulate 
a free droplet containing superparamagnetic particles to 
detect the highly pathogenic avian influenza virus H5N1 
in a throat swab sample. The RT-PCR results showed 
equally sensitive, 440% faster and 2,000-5,000% cheaper 
compared to commercially available tests. Wang et al. [55] 
designed and fabricated a droplet-based micro oscillating 
flow PCR chip by the silicon microfabrication technique 
to miniaturize the flow process while maintaining the 
advantages of fixed temperature conditions. The results 

demonstrated that the chip successfully amplified the 
HPV-DNA, with a processing time of about 15 min. Mohr 
et al. [56] investigated some droplet PCR chip design 
factors including thermal mass, flow rate and thermal 
resistance. Specially, they focused on the fluid and 
substrate temperature distribution within the PCR chip 
and the droplet residence times in critical temperature 
zones. Some parameters related to PCR amplification 
efficiency were studied, such as reagent concentration, 
droplet size and hold time at each temperature step [57].
The droplets, as individual reactors, can contain many 
DNA templates and be amplified individually. In addition, 
droplets can be produced at a very high frequency within 
one experiment, so parallel processing is achievable 
to produce large data sets and offer higher degree of 
confidence following analyses [58]. Droplet chips serve 
as an ideal mean to a future generation of high-throughput 
droplet PCR [60-64].

    A high-throughput microfluidic chip that encapsulates 
PCR reagents in millions of picoliter droplets in a 
continuous oil flow was developed and it showed high 
sensitivity (detection of template concentrations as low 
as 0.003 pg/μL in 35 min)[65]. Srisa-Art et al. [66] 
demonstrated a novel, high-throughput, droplet-based 
microfluidic assay and allowed for online characterization 
and detection of droplets (with typical volumes of 300 pl) 
at rates in excess of 1 kHz. Andrew et al. [67] proposed 
a high-throughput microfluidic chip, which is capable of 
generating over 1-million, monodisperse, 50 pl droplets in 
2-7 minutes, as shown in Fig. 7. In addition, the chip was 
integrated rapid droplet generation, thermocycling, and 
wide-field fluorescence imaging.

     Although the development of droplet PCR chips is 
still in their infancy, they have shown the great potential, 
particularly for high-throughput PCR [60-64]. 

4. SlipChip PCR

    Recently, the team in the University of Chicago 

Fig. 5 .Convection PCR chip (a) design, (b) fabrication [40].

Fig. 6 .Droplet generation strategies: (a) co-flow in a capillary format, 
(b) T-Junction in a planar chip format, (c) flow focusing in a planar chip 
format [46].
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Fig. 7 .High-throughput microfluidic PCR chip [67].

Fig. 8 Schematic drawing of digital SlipChip PCR for: (a) part of the 
top plate, (b) part of the bottom plate, (c) the entire assembled SlipChip 
after slipping. [74]

Fig. 9. Integrated PCR chip [80].

pioneered an ingenious method to perform microfluidic 
chip without external pumps, valves and other equipment 
for operation. The system consists of two glass plates 
with arrays of wells and channels. By moving one plate 
relative to another plate, reagent and sample can be 
brought into contact and reaction [68-70]. The SlipChip 
has been applied to protein crystallization [71, 72], 
immunoassay [73], nucleic acids analysis [74-76]. 
They proposed a very simple and inexpensive digital 
SlipChip PCR that contained 1280 droplets of 2.6 nl 
each, and was capable of detecting the template DNA 
at single copy level [74]. Then they developed a high-
throughput nanoliter multiplex SlipChip PCR with robust 
performance and lack of false negatives, false positives, 
and cross-contamination. The chip was designed to 
preload one primer pair per reaction compartment and to 
screen up to 384 different primer pairs with less than 30 
nl of sample per reaction compartment [75]. 

    The SlipChip PCR can perform multiplex detection 
with different primer pairs loaded in different reaction 
chambers. Although SlipChip is at an early stage of its 
development, it offers a new microfluidic platform that 
opens up new possibilities for the realization of robust 
chip laboratories [70].

5. Integrated PCR chip

    The PCR chip has undergone the transition from simple 
microfluidic components to highly integrated systems. 

An ideal integrated PCR chip can integrate individual 
microfluidic components, such as cell isolation and 
capture, cell lysis, DNA/RNA extraction and purification, 
DNA/RNA amplification, and product detection into a 
single automated, portable chip with sample-to-answer 
capability. It is attractive and challenging to realize the 
integrated chip, especially the low cost, portable, high-
throughput integrated chip.

  Yuen et al. [77] isolated white blood cells from whole 
blood by filter section of the microchip and subsequently 
directly performed PCR. The microchip provides a 
convenient means to simplify nucleic acid analyses by 
integrating two key steps: cell isolation and PCR. Ferrance 
et al. [78] reported a microchip integrated extraction 
of genomic DNA, IR-mediated PCR amplification and 
electrophoretic analysis. They used a novel sol–gel 
matrix to extract of genomic DNA from whole blood, and 
detected directly by electrophoretic analysis in the chip. 
Liu et al. [79] developed a self-contained, fully integrated 
biochip. The chip started with magnetic bead-based target 
cell capture, cell concentration and purification, and cell 
lysis, followed by PCR amplification and electrochemical 
DNA microarray-based detection. The chip provides a 
cost-effective solution to direct sample-to-answer genetic 
analysis. Hong et al. [80] developed microfluidic chips for 
automated nucleic acid purification from small numbers 
of bacterial or mammalian cells. The chip has 26 access 
holes, 1 waste hole and 54 valves within 20 × 20 mm2, as 
shown in Fig. 9. The chip involves all processes in term 
of cell isolation, cell lysis, DNA or mRNA purification, 
and recovery, so any pre- or postsample treatment is not 
needed. In addition, the chips are capable of processing 
different samples in parallel, thereby illustrating high-
throughput performance. 

    The PCR product analysis is also important in the 
integration chip. Some reviews have presented this issue 
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in detail [81, 82].

    One of the main challenges in miniaturization is the 
integration of functional components to perform several 
operations without the need for macro apparatus or 
manual user input. Higher levels of integration can reduce 
or avoid cross-contamination in a multitude of samples to 
be run in parallel [83-86].
 
6. Conclusions

development and dramatically changed conventional 
PCR for DNA amplification. Since the first PCR chip 
was developed, many microfluidic PCR chips with 
various characteristics were designed to meet challenges. 
Chamber stationary PCR chips have high thermal inertia 
and long thermal-cycling time. Flow-through PCR chips 
have short cycling time, but result in PCR inhibition 
and contamination. Convection PCR is predicted to 
be a promising technology, but challenges still exist in 
realization of parallel and multiplex convective PCR and 
integration of convective PCR with other functionalities. 
To overcome the drawbacks in Flow-through PCR chip, 
droplet PCR chips are used widely. In addition, they 
have shown the great potential, particularly for high-
throughput PCR, although they are still in the early stage. 
The ingenious SlipChip PCR provides a method for 
multiplex detection and opens up new possibilities for the 
realization of robust chip laboratories. Unfortunately, few 
microfluidic PCR chips have been commercialized. But 
there is no doubt that low cost, portable, high-throughout 
integrated PCR chips will be widely used in the future.
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