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Polyethylene Glycol-Functionalized Magnetic (Fe3O4) 
Nanoparticles: A Novel DNA-Mediated Antibacterial 
Agent

Abstract
                         

The Fe3O4-PEG magnetic nanoparticles (NPs) were prepared by hydrothermal method at different 
concentrations (FeCl3·6H2O 0.75 mg/mL and FeCl3·6H2O 1.5 mg/mL) and subsequently surface-func-
tionalized coating with polyethylene glycol (PEG), the successful coating of PEG molecules on the 
surface of Fe3O4. These magnetic NPs exhibited good dispersibility and dissolvability in physiological 
condition. The obtained magnetic nanoparticles were characterized by X-ray diffraction (XRD), trans-
mission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thermogravim-
etry (TG) and vibrating sample magnetometer (VSM). The antibacterial activity of Fe3O4-PEG mag-
netic nanoparticles (MNPs) was studied against two bacterial strains: Gram-positive Staphylococcus 
and Gram-negative Escherichia coli aureus. The modified MNPs had a significant effect is more on S. 
aureus and less on E. coli. The results showed that polyethylene glycol-functionalized magnetic (Fe3O4) 
NPs as a novel DNA-mediated antibacterial agent.
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Introduction
Nanoparticles (NPs) are submicron moieties 

(diameters ranging from 1 to 100 nm according to the 
used term, although there are examples of NPs several 
hundreds of nanometers in size) made of inorganic or 
organic materials, which have many novel properties 
compared with the bulk materials [1]. On this basis, 
magnetic NPs have many unique magnetic properties 
such as superparamagnetic, high coercivity, low 
Curie temperature, high magnetic susceptibility, etc. 
Magnetic NPs are of great interest for researchers 

from a broad range of disciplines, including magnetic 
fluids, data storage, catalysis, and bioapplications [2-6]. 
Especially, magnetic ferrofluids and data storage are 
the applied researches that have led to the integration of 
magnetic NPs in a myriad of commercial applications. 
Currently, magnetic NPs are also used in important 
bioapplications, including magnetic bioseparation and 
detection of biological entities (cell, protein, nucleic 
acids, enzyme, bacterials, virus, etc.), clinic diagnosis 
and therapy (such as magnetic resonance image (MRI)) 
andmagnetic fluid hyperthermia (MFH), targeteddrug 
delivery and biological labels, etc. 



19Nano Biomed. Eng., 2019, Vol. 11, Iss. 1

http://www.nanobe.org

However, it is crucial to choose the materials for the 
construction of nanostructure materials and devices 
with adjustable physical and chemical properties. To 
this end, magnetic iron oxide NPs have become the 
strong candidates, and the application of small iron 
oxide NPs in in-vitro diagnostics has been practiced 
for nearly half a century [7]. In the last decade, 
increased investigations with several types of iron 
oxides have been carried out in the field of magnetic 
NPs (mostlyincluding the Fe3O4 magnetite, FeIIFeIII

2O4, 
ferrimagnetic, superparamagnetic when the size is less 
than 15 nm), α-Fe2O3 (hematite, weakly ferromagnetic 
or antiferromagnetic), and γ-Fe2O3 (maghemite, 
ferrimagnetic) [8], among which magnetite and 
maghemite are the very promising and popular 
candidates giventheir biocompatibility that has already 
been proven. The iron oxide NPs with controlled 
size and shape are technologically important due to 
the strong correlation between these parameters and 
magnetic properties. The microemulsion and thermal 
decomposition methods usually lead to complicated 
process or require relatively high temperatures. As an 
alternative, hydrothermal synthesis includes various 
wet chemical technologies of crystallizing substance in 
a sealed container from the high temperature aqueous 
solution (generally in the range from 130 to 250 °C) 
at high vapour pressure (generally in the range from 
0.3 to 4 MPa). This technique has also been used to 
grow dislocation-free single crystal particles, and 
grains formed in this process could have a better 
crystallinity than those from others, so hydrothermal 
synthesis is prone to obtain the highly crystalline 
iron oxide NPs.Although most studies have focused 
on the development of small organic molecules and 
surfactants coating up to now, recently polymers 
functionalized iron oxide NPs are receiving more and 
more attention, owing to the fact that advantages of 
polymers coating will increase repulsive forces to 
balance the magnetic and the van der Waals attractive 
forces acting on the NPs. 

In addition, polymers coating onthe surface of iron 
oxide NPs offer a high potential in the application 
of several fields. Moreover, polymer functionalized 
iron oxide NPs have been extensively investigated 
due to  the interest in their unique physical or 
chemical properties. Polymer coating materials can 
be classified into synthetic and natural. The saturation 
magnetization value of iron oxide NPs will decrease 
after polymers functionalization. Currently, there are 
two major developing directions to form polymers 

functionalized iron oxide NPs. One is for the purpose 
of expanding the application range by introducing 
functional polymers. For instance, Gupta et al. [9] 
reported a microemulsion polymerization process 
to prepare polyethylene glycol (PEG)-modified 
superparamagnetic iron oxide NPs with magnetic core 
and hydrophilic polymeric shell. Highly monodispersed 
iron oxide NPs were synthesized by using the aqueous 
core of aerosol-OT (AOT)/n-Hexane reverse micelles 
(without microemulsions) in N2 atmosphere. The 
average size of the PEG-modified NPs was found to 
be around 40-50 nm with narrow size distribution. It 
is important that the cytotoxicity profile of the NPs on 
human dermal fibroblasts, as measured by standard 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide assay, showed that the particles are nontoxic 
and may be useful for various in-vivo and in-vitro 
biomedical applications. Another is for the purpose of 
manufacturing monodisperse NPs with a well-defined 
shape and controlled composition [10]. 

Experimental 
Chemicals and materials

Ferr ic  chlor ide hexahydrate  (FeCl3·6H2O), 
anhydrous sodium acetate (NaOAc), polyethylene 
g l y c o l  ( P E G ) - 4 0 0 0 ,  e t h y l e n e  g l y c o l  ( E G ) , 
ethanolamine (ETA) and ethanol were purchased  from 
Beijing Chemicals (Beijing, China). Calcein AM was 
obtained from Sigma-Aldrich (Shanghai, China). All 
chemical agents were of analytical grade and used 
directly without further purification.

Preparation of Fe3O4-PEGmagnetic 
nanoparticles (MNPs) 

Fe3O4-PEG MNPs were synthesis by hydrothermal 
method. FeCl3·6H2O (0.75 mg/dL and 1.5 mg/mL) 
was dissolved in solvent containing equal volume of 
EG and ETA. NaOAc (4 g) and PEG-4000 (2 g) were 
added into the above solution under magnetic stirring. 
The homogeneous solution was transferred to a Teflon-
lined stainless-steel autoclave (100 mL) and sealed to 
heat at 200 °C. After reaction for 10 h, the autoclave 
was cooled to ambient temperature naturally. The 
MNPs were washed with ethanol and deionized water 
(DW) in sequence, and then dried in vacuum at 60 °C 
overnight.

Characterization of MNPs
The prepared MNPs were identified by structural 
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and optical techniques. X-ray diffraction (XRD) 
characterizations of the synthesized MNPs was made 
by powder using a Shimadzu XRD 6000 with Cu-
Kα radiation source at 2θ =10°- 80°. An 8000 Series 
Shimadzu Fourier transform infrared spectroscopy 
(FTIR) system was used to study the molecular 
vibrations of the prepared samples. To examine the 
morphological properties of the MNPs, transmission 
electron microscopy (TEM; Philips) was used. Samples 
for TEM analysis were prepared by providing a MNPs 
solution drop on a Cu grid coated with gold (containing 
about 200 meshes). The magnetic properties were 
measured on a BHV-55 vibrating sample magnetometer 
(VSM). PerkinElmer TGA-7 was employed to perform 
the thermogravimetric analysis (TGA). Dried sample 
was placed in the TGA furnace and the measurements 
were carried out under nitrogen with a heating rate of 
20 °C/min from 25 to 600 °C.

Antibacterial activity
Agar well diffusion assay

In this study, the antibacterial activity of Fe3O4-PEG 
magnetic NPs was investigated against two types of 
bacterial strains: E. coli and S. aureus using agar well 
diffusion assay. About 20 mL of Mueller-Hinton (M-H) 
was aseptically poured into sterile Petri dishes before 
culturing. The bacterial species were collected from 
their stock cultures using a sterile wire loop. After 
culturing the organisms, 6 mm-diameter wells were 
bored on the agar plates using of a sterile tip. Into the 
bored wells, different concentrations of the bare Fe3O4 
and Fe3O4-PEGNPs (100, 250 and 500 µg/mL) were 
used. The cultured plates containing the NPs and the test 
organisms were incubated overnight at 37 °C before 
measuring and recording the average diameter of the 
produced zones of bacterial inhibition by the respective 
nanoparticle concentrations. The experiments were 
performed in triplicate. DW was used as a negative 
control. 

Release of cellular materials
This method was done using sterile peptone water 

(0.75 g/50 mL) that was sterilizedat 15l bs pressure 
and 121°C temperature in 15 min. Then the medium 
inoculated with each bacterial strain. After 24 h in 
incubation, the prepared solutions of Fe3O4-PEG 
MNPs at concentration of 100 µg/mL was put into 
each tube. After 0, 30, 60 and 120 min of treatment, 
cells were centrifuged at 3500 rpm, and the absorbance 
of spectrum was determined at 510 nm. Results were 
expressed as the percentage between the absorbing 

materials in 510 nm of each interval with the time [12].

Detection of reaction oxygen species (ROS)

An acridine orange/ethidium bromide (AO/EB) 
staining procedure was used to detect the release of 
ROS by the treated and non-treated bacterial cells. 
For the antibacterial activity of the NPs on the studied 
organisms, a fluorescent microscope was used. Cell 
viability after treatment was distinguished using 
AO/EB staining procedure. 50 μL of the treated and 
non-treated bacterial suspension was mixed with 
50 μL of 10 μg/mL AO/EB and allowed for 5 min. 
After staining, a film of the mixture was made on 
a glass slide and immediately examined under an 
immunofluorescent microscope. With this staining 
procedure, the acridine orange-stained living cells 
fluoresced green while the ethidium bromide-stained 
dead cells fluoresced red [13].

Electrophoresis analysis of DNA fragmentation

Analysis of DNA fragmentation was performed 
us ing  bac t e r i a l  ex t r ac t ion  k i t  acco rd ing  to 
manufacturer’s protocol. Bacterial strains were 
treated with Fe3O4-PEG at different concentrations 
(FeCl3·6H2O 0.75 mg/mL, and FeCl3·6H2O 1.5 mg/
mL). For the treated and untreated bacterial strains, the 
DNA cells suspension was centrifuged (10000 rpm) at 
4 °C for 10 min. The DNA was dissolved with DNA 
loading buffer, and then applied to 1.5% agarose gel 
electrophoresis. UV illuminator was used to visualize 
the results.

Statistical analysis 

The comparison between groups was made using 
unpaired t-test. A p-value of <0.05 was considered 
significant [14]. 

Results and Discussion
Structural properties of Fe3O4-PEG MNPs 

The XRD patterns of both prepared samples are 
shown Fig. 1. The prepared samples were composed 
of crystalline single phase cubic inverse spinal Fe3O4 
structure, where the position and relative intensity 
of all observed diffraction peaks matched well with 
those of the JCPDS card number (11-0614) for 
magnetite. No peak was observed from any impurities. 
The characteristic peaks of the coated NPs had no 
shifting in the position but presented some broadening, 
indicating that the Fe3O4-PEG MNPs had small 
crystalline size as compared with Fe3O4-PEG MNPs 
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prepared using high concentration of FeCl3·6H2O. 
Furthermore, the peak intensity of the Fe3O4-PEG 
MNPs prepared using low concentration of FeCl3·6H2O 
was lower than the Fe3O4-PEG MNPs prepared using 
high concentration of FeCl3·6H2O, which was related 
to the existence of PEG more coated on the surface of 
MNPs prepared in the previous way. The crystalline 
size was calculated by measuring the half-height width 
of the strongest reflection plane (i.e, 311), using the 
well-known Scherrer’s relation (D=0.9 λ/β cos(θ)), 
where, (β) is the full width at half maxima (FWHM) 
of the 311 peak. The calculations reveal ed that the 
Fe3O4-PEG MNPs prepared using low concentration of 
FeCl3·6H2O and Fe3O4-PEG MNPs prepared using high 
concentration of FeCl3·6H2O had sizes of 7.3 nm and 
13.7 nm respectively [15]. 

Morphological properties of Fe3O4-PEG MNPs
For the better observation of morphology of the 

prepared MNPs, the TEM observation of samples 
are show in Fig. 2. It is clearly observable that both 
prepared MNPs had spherical shape. The Fe3O4-
PEG MNPs prepared by using low concentration of 

FeCl3·6H2O exhibit ed better dispersibility as shown 
in Fig. 2(a), whereas the Fe3O4-PEG MNPs prepared 
using high concentration of  FeCl3·6H2O were rather 
agglomerated. The less agglomerated texture may be 
related to the effect of polymer layer during the particle 
formation. The coating of Fe3O4 NPs with polymer 
led to decrease in the magnetic interaction among the 
particles due to their reduce magnetism and prevented 
their agglomeration [16]. From the TEM image, the 
mean diameters of MNPs were estimated to be 3 nm 
and 9 nm, respectively.  

Chemical properties of Fe3O4-PEG MNPs
The surface chemical structures of Fe3O4-PEG-NPs 

were characterizd by Fourier-transform infrared (FTIR) 
spectroscopy. Fig. 3 exhibits the FTIR spectra of the 
PEG coated NPs. The broad peak near 3433-3446 cm−1 
in all FTIR spectra belonged to the attached hydroxyl 
groups. Two broad peak bands around 628 and 584 
cm–1 resulted from split of the ν1 band of the Fe-O 
bond. The relative sharp band at 443 cm–1 corresponded 
to ν2 band of the Fe-O bond. These results confirmed 
the magnetite phase of the prepared NPs after coating 

Fig. 1  XRD pattern of Fe3O4-PEG magnetic nanoparticles at different concentrations: (a) Fe3O4-PEG prepared using low 
concentration of FeCl3·6H2O; and (b) Fe3O4-PEG magnetic nanoparticles prepared using high concentration of FeCl3·6H2O.

300

200

100

0

In
te

ns
ity

 (a
.u

.)

20 30 40 50 60 70 80
2θ (°) 2θ (°)

400

200

0

In
te

ns
ity

 (a
.u

.)

20 30 40 50 60 70 80

(a) (b)

Fig. 2  TEM images of Fe3O4-PEG magnetic nanoparticles: (a) Fe3O4-PEG prepared using low concentration of FeCl3·6H2O; and (b) 
Fe3O4-PEG magnetic nanoparticles prepared using high concentration of FeCl3·6H3O.

32 nm 32 nm(b)(a)



22 Nano Biomed. Eng., 2019, Vol. 11, Iss. 1

http://www.nanobe.org

with PEG. The absorption bands around 1624-1627 
cm–1 originated from stretching and deformation 
vibration hydroxyl groups connected to the surface 
of NPs. Also, the C-O-C ether stretch and vibration 
bands existed at 989 and 1058 cm−1, respectively. The 
bands around 2924 and 916 cm−1 corresponded to the 
-CH stretching vibration and its out-of-plane bending 
vibration, respectively. The -CH-groups bending were 
also observed at 1462 cm−1. These findings on FTIR 
spectra completely confirmed the PEG coat on the 
MNPs surface [17]. 
Vibrating sample magnetometer (VSM) of 
Fe3O4-PEG MNPs

Magnetic properties of the NPs were analyzed by use of 
the vibrating sample magnetometry at room temperature. 
Fig. 4 shows the hysteresis loops of the samples. The 
saturation magnetization was found to be 57.93 emu/g for 
Fe3O4-PEG MNPs prepared using low concentration of 
FeCl3·6H2O, which waslower than the Fe3O4-PEG MNPs 
prepared by using high concentration of FeCl3·6H2O that 
was 59.66 emu/g. This difference suggested that large 

amount of polymer (PEG) encapsulated more ofMNPs 
prepared by low concentration than those prepared with 
high concentration. In addition; there was no hysteresis 
in the magnetization, with both remanence and 
coercively being zero, suggesting that these magnetic 
NPs were superparamagnetic [18]. When the external 
magnetic field was removed, the MNPs could be well 
dispersed by gentle shaking. These magnetic properties 
are potential for applications in both biomedical and 
bioengineering fields.  
Thermogravimetric analysis (TGA) of Fe3O4-
PEG MNPs

The thermo gravimetric analysis is one of the most 
important techniques and is used to determine thermal 
stability and physicochemical properties of compound 
by percent weight loss. Fig. 5 illustrates the TGA 
curve, explaining the variation of the remaining mass 
of the samples with temperature. The organic materials 
and magnetite of the samples were completely burned 
to generate gas products and converted into iron 
oxides at the increasing temperature, respectively. 

Fig. 3  FTIR spectra of Fe3O4-PEG magnetic nanoparticles: (a) Fe3O4-PEG prepared using low concentration of FeCl3·6H2O; and (b) 
Fe3O4-PEG magnetic nanoparticles prepared using high concentration of FeCl3·6H2O.
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Fig. 4  VSM properties of Fe3O4-PEG magnetic nanoparticles: (a) Fe3O4-PEG prepared using low concentration of FeCl3·6H2O; and (b) 
Fe3O4-PEG magnetic nanoparticles prepared using high concentration of FeCl3·6H2O.
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The first weight loss stage at 60 °C could be ascribed 
to the evaporation of water molecules in the polymer 
matrix, while the other stage beginning at about 
220 °C was due to the decomposition of PEG. This 
change in profile of the thermogravimetry (TG) curve 
implicated that PEG molecules were chemically bond 
on the surface of Fe3O4 and not physically adsorbed. 
The PEG coated MNPs with high molecular weight of 
PEG would have the small percentage of the remainig 
mass [19]. The mass loss of about 4.86% was found 
for NPs prepared with low concentration and 2.25% 
was found for NPs prepared with high concentration of 
FeCl3·6H2O, attributed to the decomposition of PEG.  

 Antibacterial activity of Fe3O4-PEG

In the present study, two standard bacterial strains,S.
aureus and E. coli, were used. The zones of inhibition 
after exposing the organisms to different concentrations 
of Fe3O4-PEGwere measured and presented in Fig. 
6. From the results, PEG-Fe3O4 prepared with low 
concentration of FeCl3·6H2O was found to be more 
effective on the bacterial growth than the Fe3O4-
PEGprepared with high concentration of FeCl3·6H2O. 

Effect of the NPs on the studied organisms was of 
a concentration-dependent manner. The resistance 
of microorganisms to external agentsis was due to 
the presence of an outer membranein the bacterial 
structure. PEG is a commonly selected coating material 
for many biomedical applications, such as to enhance 
the plasma half-life of MNPs in the bloodstream, to 
improve cellular uptake of NPs, and to avoid NPs 
aggregation. The absorbance of cellular materials 
secreted by the treated organisms at 220 nm is shown 
in Fig. 7. This method related optical density (OD) of 
the culture media at 220 nm to the time. As shown in 
Fig. 7, Fe3O4-PEGprepared with low concentration 
of FeCl3·6H2O exhibited a higher capacity of 
causing damage to the cell membrane of the studied 
organisms compared to those prepared with high 
concentration of FeCl3·6H2O. The results indicated 
that Fe3O4-PEGcaused an increased permeability of 
the bacterial cytoplasmic membrane. It should be 
noted that the cytoplasmic membrane of bacteria 
served as a barrier to the leakage of ions [22, 23]. A 
recent study demonstrated that Linalool coated with 
gold NPs had great potential as antimicrobial activity 
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against bacterial strains such as Staphylococcus and 
Escherichia coli [24]. Another study showed the ability 
of carbon NPs decorated with cupric oxide in reduction 
of bacterial growth [25]. 

Detection of reaction oxygen species (ROS) 

The changes in ROS production after bacterial 
strains being treated with Fe3O4-PEG were measured 
by using the fluorescence dye, AO/EB, which detected 
both hydrogen peroxide and nitric oxide that were 
considered as ROS indicator. Thus, in order to 
study the ROS production, the bacterial culture was 
inoculated with AO/EB dye which got oxidized with 

ROS production. Impact of the tested compounds on 
the viability of E. coli and S. aureus strains was studied 
by using fluorescent microscope. EB permeated 
only cells which lost membrane integrity and linked 
with nucleic acid. Viable cells appeared as green in 
colour and non-viable cells with nucleic acid damage 
appeared red in colour [26, 27]. The results showed 
Fe3O4-PEG NPs treated bacterial strains exhibited 
moderate effect on bacterial cell as compared with 
untreated E. coli and S. aureus cells as displayed in 
Fig. 8. Fe3O4-PEG NPs showed high activity to effect 
on the cell wall membrane of bacterial strains; most 
of the cells exhibited red in colour due to the loss 

Fig. 7  Effects of PEG-Fe3O4 magnetic nanoparticles in bacterial cellular materials release: (a) Negative control; (b) Fe3O3-PEG 
prepared using low concentration of FeCl3·6H2O; and (c) Fe3O4-PEG magnetic nanoparticles prepared using high concentration of 
FeCl3·6H2O. 
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of membrane integrity and interaction with damage 
nucleic acid as seen in Fig. 8. The results showed the 
prospective suitability of the studied Fe3O4-PEGNPs 
as antibacterial agents for future biological and 
biomedical applications. 

Bacterial DNA fragmentation

To confirm the antibacterial activit of Fe3O4-PEG 
NPs, DNA-mediated, analysis of DNA fragmentation 
was done according to manufacturer's protocol. 
Fig. 9 represents a DNA fragmentation in bacterial 
strains after being treated with Fe3O4-PEG at different 
concentrat ions (FeCl3·6H2O 0.75 mg/mL and 
FeCl3·6H2O 1.5 mg/mL). DNA fragmentation was not 
observed in non-treated bacterial strains (control). On 
the other hand, in Fe3O4-PEG treated bacterial strains, 
the DNA fragmentation was very clear which suggested 
that Fe3O4-PEG at different concentrationswere able 
to kill bacterial strains via inducing fragmentation of 
bacterial DNA. Results of the present study revealed 
the antibacterial activity ofFe3O4-PEG at different 
concentrations was demonstrated by the DNA 
fragmentation assay. Furthermore, the results clearly 
showed that Fe3O4-PEG at different concentrations 
interacted with the DNA and made some structural 
or conformational changes which could alter the 
metabolic function and cause damage of bacterial 
cellular components.  

Conclusions 
T h e  F e 3O 4- P E G  M N P s  w e r e  p r e p a r e d  b y 

hydrothermal method and characterized by XRD, 
TGA, FTIR, TEM and VSM. The surface modifying 
of MNPs with PEG provided stability and enhanced 
biocompatibility for MNPs. The results confirmed that 
the prepared MNPs had proper physicochemical and 

magnetic properties for antimicrobial applications. 
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