Electrochemical Characterisation of the Redox Couple of Fe(II)/Fe(III) Mediated by Nano SiO$_2$ Modified GCE Using Cyclic Voltammetry

Muhammed Mizher Radhi1, Ahmed Ali Moosa2, Ishraq Abd-Alkareem Khalaf2

1Radiological Techniques Department, Health and Medical Technology College-Baghdad, Middle Technology University, Baghdad, (MTU) Iraq.
2Technical Engineering College-Baghdad, Middle Technology University, Baghdad, (MTU) Iraq.

Corresponding author. E-mail: mmrradhi@yahoo.com

Received: Dec. 4, 2017; Accepted: Jan. 14, 2018; Published: Feb. 13, 2018.

Abstract

A new modified working electrode of glassy carbon electrode with nanoparticles of SiO$_2$ (SiO$_2$ nanoparticles/GCE) was prepared by mechanical attachment method. The modified electrode (SiO$_2$ nanoparticles/GCE) was characterised by electrochemical analysis using cyclic voltammetric technique to evaluate this electrode as nano-sensor. A standard solution of 1 mM K$_4$[Fe(CN)$_6$] with 1 M KCl as an electrolyte was used to study the redox current peaks of FeII/FeIII ions on the modified electrode at different concentrations, scan rates, pH, determination of diffusion coefficient (D_f), reliability and stability of the modified electrode. It was found the new nano-sensor (SiO$_2$ nanoparticles/GCE) had enhancement for the oxidation and reduction current peak of FeII/FeIII ions of about 1.29 and 1.58 µA, respectively. The current ration value of the new modified electrode was $I_{pa}/I_{pc} = 1.7$ with the peak separation of $\Delta E_{pa-c} = 140$ mV, which demonstrated that the new modified electrode acted in electrolyte as irreversible and heterogeneous reaction, had low detection limit, and enhanced the redox current peaks in acidic pH with good reliability and stability of nanoparticles on the surface of GCE.

Keywords: SiO$_2$ nanoparticles; cyclic voltammetry; GCE; FeII/FeIII; KCl

Introduction

Scientists studied different modified working electrodes with nanoparticles to produce high-quality sensors with low detection limit by cyclic voltammetry [1-6]. Silica (SiO$_2$) nanoparticles were studied by electrochemical method and micro-calorimetry; the particles interacted with the monolayer of dioleoyl phosphatidylcholine on a mercury (Hg) film electrode. The result illustrated that the extent of interaction was inversely proportional to the particle diameter. Scanning electron microscopy (SEM) images showed that the nanoparticles bound to the dioleoyl phosphatidylcholine [7]. Different photo-luminescent SiC-dots/SiO$_2$ were synthesised by heating reaction, and the electrochemical application was studied. The electrical properties of the photoluminescence
were found stable, low-toxic, low-cost and with great economic potential in many applications such as light-emitting diodes, photo-luminescent windows and fuel cells [8]. Through the electrochemical method, a silicon layer was synthesised on a molybdenum (Mo) electrode in a CaCl₂ which melt containing silicon oxide (SiO₂) nanoparticles at 850 °C. The oxidation of electrode-posited silicon in CaCl₂ melt, producing a redox couple at positive potentials of the deposition potential [9]. SiO₂ nanotubes were fabricated by hard-template growth method and evaluated as an anode for Li-ion batteries. The high-aspect-ratio ratio of these nanotubes allows for a relatively scalable fabrication method of nanoscale SiO₂-based anodes [10]. Silicon dioxide thin films were studied with Cu/Cu⁺ by cyclic voltammetry. The diffusion coefficient and the mobility of Cu ions in SiO₂ were calculated [11]. The synthesis of polyaniline-SiO₂ composites by chemical oxidation polymerisation was carried out in the presence of phosphoric acid and was evaluated for protection of mild steel from corrosion in strong aggressive medium. A higher protection efficiency up to 99% was achieved [12].

In this study, silicon dioxide nanoparticles were used as modified materials on the glassy carbon electrode (GCE), and the electrochemical characterisation was carried out by cyclic voltammetric method.

Results and Discussion

Enhancement of different electrodes

Different electrodes were used in electrochemical analysis by cyclic voltammetry for GCE and SiO₂ NPs/GCE to be characterised by standard solution of 1mM K₄[Fe(CN)₆] with 1 M KCl as an electrolyte. Fig. 1 illustrates the oxidation-reduction current peaks of FeII/FeIII ions on GCE and SiO₂ NPs/GCE, which shows an enhancement of both redox current peaks at modified GCE with SiO₂ NPs. This nanoparticle-layer of SiO₂ on the surface of GCE acted as an electro-catalyst as revealed in Table 1 [14].

Table 1 shows the enhancement of oxidation-reduction current peaks of FeII/FeIII ions on GCE and SiO₂ NPs/GCE, which shows an enhancement of both redox current peaks at modified GCE with SiO₂ NPs. This nanoparticle-layer of SiO₂ on the surface of GCE acted as an electro-catalyst as revealed in Table 1 [14].

Table 1 shows the enhancement of oxidation-reduction current peaks of FeII/FeIII ions on GCE and SiO₂ NPs/GCE, which shows an enhancement of both redox current peaks at modified GCE with SiO₂ NPs. This nanoparticle-layer of SiO₂ on the surface of GCE acted as an electro-catalyst as revealed in Table 1 [14].

Calibration graph

The characterisation of the new modified working electrode nano SiO₂/GCE was carried out with different

Table 1 Anodic and cathodic current peaks enhancement of modified electrode

<table>
<thead>
<tr>
<th></th>
<th>Anodic peak</th>
<th></th>
<th>Cathodic peak</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anodic peak</td>
<td></td>
<td>Cathodic peak</td>
<td></td>
</tr>
<tr>
<td>SiO₂ NPs/GCE</td>
<td>Iₚ = 69.2</td>
<td>Eₚ = 339 mV</td>
<td>Iₚ = −41.2</td>
<td>Eₚ = 199 mV</td>
</tr>
<tr>
<td>GCE</td>
<td>Iₚ = 53.6</td>
<td>Eₚ = 339 mV</td>
<td>Iₚ = −26.1</td>
<td>Eₚ = 157 mV</td>
</tr>
</tbody>
</table>
concentrations of standard solution of $K_4[Fe(CN)_6]$ in 1 M KCl as the supporting electrolyte to determine the calibration curve and to calculate the detection limit of the nano sensor. Fig. 2 illustrates the cyclic voltammogram of the low and high concentrations (4-19 mM) of $K_4[Fe(CN)_6]$ for the modified electrode nano SiO$_2$/GCE to find the oxidation-reduction current peak of FeII/FeIII. Fig. 3 & 4 show the calibration graph of the oxidation-reduction peak by equations $y = 0.0397x + 3.1017$ with the sensitivity of $R^2 = 0.8508$, and $y = 0.0806x + 2.3135$ with $R^2 = 0.9295$, respectively. The new modified electrode SiO$_2$ NPs/GCE had good detection limit, and so it can be used in the electrochemical analysis of samples of material traces in different concentrations. This is in agreement with the work by Orata et al. [18].

Effect of scan rate (SR)

One important study in cyclic voltammetric technique is the different scan rates on SiO$_2$ NPs/GCE which effected on the redox current peaks of FeII/FeIII ions by enhancing the oxidation current peak from 23.2 to 68.7 μA at scan rate 0.1 V/sec, and for reduction...
current peak from −14.2 to −41.2 μA at scan rate 0.01 V/sec as shown in Fig. 5.

Fig. 6 shows the relationship between the oxidation current peak against the scan rate as in the equation \(y = 423.64x + 21.14 \) with a good sensitivity of \(R^2 = 95.09 \). Fig. 7 shows the reduction current peak of FeII/FeIII as in the equation \(y = 264.06x + 15.747 \) with a good sensitivity of \(R^2 = 9155 \). This is in agreement with the work done by Orata et al. and Abdullah et al. [18, 19].

Fig. 7 Relationship between the reduction current peak of 1 mM \(\text{K}_4[\text{Fe(CN)}_6] \) in 1 M KCl on \(\text{SiO}_2 \) NPs/GCE versus different scan rate (0.01-0.1 V/sec).

Diffusion coefficient determination

The diffusion coefficient of the redox process for FeII/FeIII ions in the 1 M KCl as an electrolyte was calculated from the Randles-Seveik equation which describes it as a reversible redox couple [20, 21].

\[
I_p = (2.69 \times 10^5) n^{3/2} A C D_f^{1/2} V^{1/2}
\]

where, \(I_p \) is the current peak (μA), \(n \) is the number of moles of electrons transferred in the reaction, \(A \) is the area of the electrode (cm²), \(D_f \) is the diffusion coefficient (cm²/sec), and \(V \) is the scan rate of the applied potential (V/sec).

It was found the diffusion coefficient of oxidation-reduction reaction of FeII/FeIII ions in KCl solution on \(\text{SiO}_2 \) NPs/GCE was \(D_{fa} = 2.0 \times 10^{-5} \) and \(D_{fc} = 7.3 \times 10^{-6} \) cm²/sec respectively, while the diffusion coefficient values of the oxidation-reduction ions on GCE were \(D_{fa} = 1.1 \times 10^{-5} \) and \(D_{fc} = 1.9 \times 10^{-6} \) cm²/sec. The diffusion coefficient on the modified electrode was higher than on the GCE, which indicated that the thin film of nano-materials on the surface of working electrode acted as an electro-catalyst in the electrolyte [22].

Different pH study

It is scientifically known that different pH values effect directly on the oxidation-reduction current peaks of FeII/FeIII ions in KCl as electrolyte on nano-sensors \(\text{SiO}_2 \) NPs/GCE [23]. The electrochemical analysis of FeII/FeIII ions in both acidic (pH = 2) and alkaline (pH = 12) is shown in Fig. 8, which reveals the acidic medium enhanced redox current peaks about two folds than that in alkaline medium. Hence, acidic pH acted as an electro-catalyst on the surface of GCE by \(\text{SiO}_2 \) NPs layer. Fig. 9 & 10 show the electrochemical behaviour of oxidation-reduction current peaks of FeII/FeIII ions in acidic and alkaline media respectively [24]. But both redox current peaks began to decline gradually after
the rise of pH to 12 due to the bulky molecule and the difficulty of transmission through the electrolyte [25].

Reliability and stability study

Fig. 11 shows the reliability and stability of nanoparticles of SiO$_2$ on the surface of GCE in electrolyte using cyclic voltammetric technique. The relative standard deviation (RSD) was determined from the range of oxidation-reduction current peak values at 10 times by cycling voltammogram with accepted results of $\pm 0.5\%$ and $\pm 0.61\%$, respectively which was in agreement with the work of Karimi et al. and Naseri et al. [25, 26].

Transmission Electron Microscopy (TEM) study

Fig. 12 shows the morphology structure of SiO$_2$ NPs by TEM. It was found that the spherical shape of nanoparticles was in fine picture with dimeters of 20-30 nm.

Conclusions

It can be said that the modified working electrode as prepared in the laboratory, the nano-sensor SiO$_2$ NPs/GCE, had good electrochemical properties in the cyclic voltammetric analysis. The results also indicated that the new modified electrode had good reliability, stability, high enhancement in conductivity and low detection limit, acted as electro-catalyst in acidic pH, and showed irreversible heterogeneous process in aqueous solution. Diffusion coefficient values of redox current peaks of FeII/FeIII ions on the modified electrode were calculated from Randle equation, which was $D_a = 2.0 \times 10^{-5}$ cm2/sec and $D_a = 7.3 \times 10^{-6}$ cm2/sec. It appeared that the silica micro-particles were non-conductive, but conductive in their nano dimeter, and the conductivity of the working electrode was enhanced in cyclic voltammetry.

Conflict of Interests

The authors declare that no competing interest exists.

References

