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Abstract

This study was conducted to identify promising applications of green silver nanoparticles (AgNPs)
prepared from a bark extract of Sweetinia mahagoni (Sm). The green synthesized Sm-AgNPs were
characterized using various spectroscopy methods. AgNPs were first investigated using
ultraviolet—visible spectroscopy, and the metal nanoparticles exhibited an intense surfaceplasmon
resonance (SPR) peak at different wavelengths. The green synthesized Sm-AgNPs had an SPR peak at
430 nm, which confirms the formation of Sm-AgNPs. In addition, Fourier transform infrared (FTIR)
spectroscopy was conducted to determine the bioactive compounds of bark extract that actively
participate in the reduction of Sm-AgNPs, and the results revealed O—H stretching of free hydroxyl
alcohol and phenols, N—H bonds of primary amines, S=O stretching of sulfoxide in aromatic groups,
C—1 stretching due to aliphatic iodo compounds, and C—Br stretching by halo compounds of the bark
extract which might reduce and stabilize Sm-AgNPs. Scanning electron microscopy (SEM) and
energy dispersive X-ray spectroscopy (EDS) results revealed that Sm-AgNPs were approximately
irregular spheres. EDS results revealed the complete reduction of silver to elemental silver. The
particle size analysis of Sm-AgNPs was conducted using dynamic light scattering (DLS), and the
results revealed that Sm-AgNPs were polydisperse with an average size range from 35.8 to 47.8 nm,
an average mean size of 41.3 nm, and a Z average of 37.7 nm. Sm-AgNPs had a negative zeta
potential value of —19.0 mV, indicating that Sm-AgNPs were very stable in colloidal form. Further
studies were carried out to demonstrate their usefulness in industrial and biomedical applications. In
these studies, Sm-AgNPs exhibited a very good antibacterial activity against both Gram-negative and
Gram-positive bacteria. In addition to regular assays, we also investigated important industrial
applications such as the reduction of toxic hexavalent chromium to a nontoxic form and sensing of
Hg* ions. The results revealed that Sm-AgNPs had an excellent performance in biosensor applications
such as sensing and detecting mercury at parts per million/parts per billion levels. In conclusion, green
Sm-AgNPs are promising materials in therapeutic and industrial applications.
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Introduction disorders, and the deadly Minamata disease [7].

The towering industrial development in the past
twenty years has resulted in environmental pollution
due to industrial waste and toxic elements, and
researchers actively focus on this major problem.
These contaminants are the main etiology of several
human diseases and disorders. These toxic elements
are also a major cause of contamination of soil and
water resources. Furthermore, the agricultural crops
growing in these contaminated soils cause
gastrointestinal ~ problems, anemia, and skin
disorders [1-3]. According to the World Health
Organization (WHO), the maximum concentration of
Cr(VI) should not exceed 0.05 mg/L [4]. Cr(V]) is
highly toxic in nature and induces carcinogenic and
mutagenic changes in humans, leading to cancer and
other disorders, which is confirmed and evaluated by
the International Agency for Research on Cancer [5].
Environmental pollution caused by

(Cr(VI)) accumulation in water bodies and soil is a

chromium
problem for various industries (e.g., chemicals,
leather tanning, chrome plating, wood preservation,
and dye
applications and products [6]. Therefore, scientists

alloy manufacturing, manufacturing),
must work on how to reduce Cr(VI) contamination to
preserve a suitable habitat for humans. Researchers
have investigated a variety of methods using
nanotechnology to reduce Cr(VI) to Cr(Ill), since
Cr(IIl) is believed to be less toxic in nature, has a
poor fluidity, easily precipitates in the presence of
various natural adsorbents, and is easily reduced by

various metal nanoparticles.

Another major environmental problem is the
accumulation of mercury in water and soil, which can
lead to major health problems in humans and animals.
Mercury is highly soluble in water and exists
primarily on the water surface. Once mercury enters
an aquatic ecosystem, this toxic element accumulates
in the food chain in the form of methyl mercury (a
neurotoxin), especially in edible fishes, causing
prenatal brain damage, various cognitive and motion

According to the WHO, the maximum permissible
level of mercury in drinking water is 1 pg/L. Thus,
excess intake of mercury can cause serious health
problems in humans due to its extremely toxic nature,
such as damage to the brain, kidneys, immune
system, and nervous system [8]. Therefore,
monitoring the mercury ions in aqueous water bodies
is highly important for environmental protection.
Different

available for mercury (Hg*) detection, such as

advanced analytical instruments are

inductively  coupled  plasma-optical  emission
spectroscopy (ICP-OES), inductively coupled plasma-
mass spectroscopy (ICP-MS), and high performance
liquid chromatography (HPLC), as well as old
analytical instruments such as atomic absorption
spectroscopy (AAS) and gas chromatography-mass
spectroscopy (GC-MS) [9-12]. Although
instruments are sophisticated, the

mercury is very expensive and requires skilled

these
detection of

personnel to operate, thus these experiments are not
suitable for field operation. Hence, a simple, rapid,
affordable, and highly sensitive method or device for
the detection of mercury is still needed.

Nanotechnology has been an emerging research
area in the last two decades, and these technologies
have resulted in the development of a wide range of
optical and electrochemical sensors for the detection
of mercury [13—-16]. These technologies are better
than conventional tools due to their low cost of
analysis, shorter analysis time, field readiness, high
specificity, and ultra-sensitivity. Silver nanoparticles
(AgNPs) have gained more attention for mercury
sensor development among the nanomaterials [17-19].
During the past decade, scientists have developed
numerous  AgNP-based
modalities for the detection of mercury [20]. AgNPs
have been used in combination with chemicals or bio-

colorimetric ~ sensing

chemicals to conduct mercury sensing. An anti-
aggregation-based colorimetric sensor was designed
for the detection of mercury ions by the addition of 6-
thioguanine during the assay [21], and the addition of
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thiol compounds, such as cysteine [22] and
dithiothreitol (DTT) [23, 24], was also used for
mercury sensing. Nain et al. [16] developed a simple
dual mechanism-based approach for the sensing of
mercury by capping AgNPs with glucose and
developed a paper-based sensor.

The present study investigated the green synthesis of
AgNPs using the aqueous bark extract of Swietenia
mahagoni (L.) Jacq (Sm). S. mahagoni (L.) Jacq. (West
Indian mahogany) belongs to the family Meliaceae. This
important plant is native to tropical and subtropical
regions. Although this plant originated from the
Caribbean, Asian countries, Mexico, and Central and
South American countries presently cultivate the plant.
Three species identified based on
geographical distribution, S. mahagoni (L.) Jacq., S.
and S.
macrophylla King (Honduran mahogany) [25]. S.
mahagoni is a medicinally important plant according to
Indian Ayurveda and has been widely used as a folk
medicine to treat different diseases. According to the
review of earlier studies, mahogany plants have a vast

have been

humilis Zucc. (Pacific coast mahogany),

range of pharmacological activities such as
antimicrobial, antioxidant, analgesic, anti-inflammatory,
hepatoprotective, antiulcer, anti-diabetic, anti-human
(HIV),

insect repellent and larvicidal, antifungal, depressant,

immunodeficiency virus immunomodulator,

anticonvulsant and neuropharmacological, platelet
aggregation inhibitors, antidiarrheal, antimutagenic, and
anticancer [26-28]. The isolated phytochemical content
from the seeds, bark, twigs, leaves, and stems of S.
mahagoni is flavonoids, anthraquinones, phospholipids,
alkaloids, phenols, terpenoids,
glycosides, volatile oils, and long chain unsaturated
acids. This plant contains more than 45 limonoids such
as swietenolide, swiemahogins A and B, andirobin,

mexicanolide,

saponins, cardiac

2-hydroxy-3-O-tigloylswietenolide,
gedunin, phragmalin, triterpenes, tetranortriterpenes,
swietenine, dimeric triterpenoid, and chlorogenic acid,
and heavy metal phytoremediation activity has also been
reported [29, 30]. The important bioactive constituents
of Swietenia bark from aqueous and methanol extracts,
which include flavonoids, triterpenoids, alkaloids, and
phenolics, are known to have antidiabetic activity.

In view of the mammoth medicinal importance of

S. mahagoni, the present research study was

conducted to develop the green synthesis of AgNPs
using bark extract, to characterize this material with
techniques ultraviolet—visible

various such as

(UV—Vis) absorbance, Fourier transform infrared
(FTIR) spectroscopy, dynamic light scattering (DLS),
zeta potential, scanning electron microscopy (SEM),
and energy dispersive X-ray spectroscopy (EDS), and
to study the biomedical and industrial applications of
this material. The biosynthesis of metal nanoparticles
using the bark extract of S. mahagoni has not been
studied thus far. Green synthesis of AgNPs and other
metal nanoparticles has been widely carried out for
the past two decades due to their simple, efficient,
that avoid
green AgNPs

and environmentally safe processes
These
fabricated with different parts of plants have various
important biomedical and industrial applications.

Fabricated AgNPs have been used in the diagnosis of

external toxic chemicals.

disease, detection of nuclear acids, and agriculture
and food industries, as well as biosensor, optical, and
electrochemical applications [31-34]. AgNPs also
have a large surface area, tunable size, excellent
catalytic activity, and superior antimicrobial and
anticancer properties [35-37].

Materials and Methods

Materials and chemicals

We used silver nitrate (Sigma-Aldrich, Munich,
Germany), mercuric chloride (Qualigens, Waltham,
MA, USA), chromium(VI) (Sigma-Aldrich), nutrient
India),
potassium bromide (Sigma-Aldrich), antibiotic discs

agar, nutrient broth (Himedia, Mumbai,
(Himedia), glassware (Borosil, Mumbai, India), and
Whatman No. 1 filter paper (Maidstone, UK) in our
experiments. S. mahagoni tree bark (Fig. 1) was
of  Sri

campus,

collected from the plantation area
Venkateswara  Veterinary  University

Tirupati, Andhra Pradesh, India.
Preparation of the S. mahagoni bark extract

Fresh bark was collected from an S. mahagoni tree,
brought to the laboratory, rinsed with tap water
followed by distilled water, and cut into small pieces.
Bark pieces were weighed, and 5 g of bark was added
to 150 mL of Milli-Q water (MilliporeSigma,
Burlington, MA, USA) and heated in a water bath for
30 min at 70 °C. The bark extract was cooled,
incubated overnight at room temperature, and filtered
through Whatman No. 1 filter paper. The filtrate was
collected and stored at 4 °C for further experiments.
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Fig. 1 (a) S. mahagoni tree, (b) tree trunk, and (¢) tree bark.

Green synthesis of AgNPs

Aqueous 1 mmol/L silver nitrate (AgNO;) was
prepared using Milli-Q water and stored at room
temperature in an amber reagent bottle. A diluted
0.2 mmol/L AgNO; solution was used for the green
synthesis. 5 mL of diluted filtrate of S. mahagoni bark
extract was added to 10 mL of 0.2 mmol/L AgNO;
solution to reduce Ag" ions and form AgNPs. The
filtrate acted as a reducing and stabilizing agent for
the reduction of 0.2 mmol/L AgNO;. The samples
were incubated at room temperature until the color of
solution changed from colorless to brown and
subsequently dark brown, as shown in Fig. 2. The
current study demonstrated that the green synthesis of
Sm-AgNPs using a bark extract of S. mahagoni was
possible without toxic and hazardous chemicals.

Purification of Sm-AgNPs

The solution containing Sm-AgNPs was centrifuged
at 10 000 r/min for 20 min to obtain green Sm-AgNPs
pellets. The Sm-AgNPs pellets were re-dispersed in

Blank 1 mLbark 2 mL of bark
1 mL of bark extract extract
extract +10mL of  + 10 mL of
+ 10 mL of  0.02 mol/L 0.02 mol/L
H,0, AgNO;, AgNO,

After heating

—_

at 70 °C for
10 min in
water bath

15 mL of Milli-Q water and centrifuged again at
10 000 r/min for 20 min to remove any unbound plant
molecules. The centrifugation and re-dispersion in
Milli-Q water were repeated thrice to obtain pure
green Sm-AgNPs that were free of unbound plant
extract residues. The purified green Sm-AgNPs
pellets were then used to conduct particle size
analysis, zeta potential analysis, SEM, and EDS.

Spectral characterization of Sm-AgNPs

Green synthesized Sm-AgNPs, as well as the bark
extract of S. mahagoni, were analyzed by UV-Vis
absorbance spectroscopy within the wavelength range
of 220-750 nm using a NanoDrop 8000 (Thermo
Fisher Scientific, Waltham, MA, USA) UV-Vis
spectrophotometer available at the DST-PURSE
Center, Sri Venkateswara University, Tirupati, India.
Green synthesized Sm-AgNPs were analyzed at room
temperature using the NanoDrop 8000
spectrophotometer at a resolution of 1 nm to detect
the surface plasmon resonance (SPR) of green

Blank 1 mL of bark 2 mL of bark
1 mL of bark extract extract
extract +10mL of  + 10 mL of
+ 10 mL of  0.02 mol/L 0.02 mol/L
H,0, AgNO; AgNO;,

Fig. 2 The color change of S. mahagoni bark extract, 1 mL of bark extract + 10 mL of 0.02 mol/L silver nitrate, and 2 mL of bark
extract + 10 mL of 0.02 mol/L silver nitrate after a 70 °C water bath for 10 min.
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synthesized AgNPs. FTIR analysis of S. mahagoni
bark extract and green synthesized Sm-AgNPs was
conducted using a Bruker Tensor 27 (Billerica, MA,
USA) at the Department of Physics, Sri Venkateswara
University, Tirupati, India to detect which bioactive
phyto-constituents were present in the bark extract
and involved in the bio-reduction and capping of
green synthesized Sm-AgNPs. Particle size and zeta
potential analyses of green synthesized Sm-AgNPs
were conducted using DLS with a Nanopartica SZ-
100 instrument (Horiba, Kyoto, Japan) available at
the DST-PURSE Center to determine the size
distribution of Sm-AgNPs in the purified aqueous
sample and stability of green synthesized Sm-AgNPs
in the aqueous colloidal solution. SEM and EDS were
conducted using an Oxford Inca Penta FeTX3 EDS
instrument (Abingdon, UK) attached to a Carl Zeiss
EVO MA 15 scanning electron microscope (200 kV,
Oberkochen, Germany) with a line resolution of
2.32 A available at the RUSA-SEM facility (Yogi
Vemana University, Kadapa, India). These images
were obtained by drop coating a drop of Sm-AgNPs
on glass pieces cut to uniform sizes. An energy
dispersive absorption spectroscopy photograph of Sm-
AgNPs was obtained using the SEM equipment
mentioned above.

Antibacterial activity of Sm-AgNPs

Bacterial strains of the microorganisms Escherichia
coli (Gram-negative), Klebsialla pneumonia (Gram-
negative), Pseudomonas aeruginosa (Gram-negative),
Staphylococcus aureus (Gram-positive), and Bacillus
megaterium (Gram-positive) were obtained from the
Department of Microbiology and Department of
Biochemistry and maintained at the DST-PURSE
Center, Sri Venkateswara University, Tirupati, India;
these strains were used to determine the antibacterial
activity of Sm-AgNPs and that of the bark extract of
S. mahagoni. The above bacterial strains were
maintained on nutrient agar slants, and subcultures
were freshly prepared in nutrient broths before use.
Bacterial cultures were prepared by transferring a
single colony into a tube containing 20 mL of nutrient
broth and grown overnight at 37 °C in a shaking
incubator. The antibacterial activities of Sm-AgNPs
and the bark extract of S. mahagoni were determined
using four different bacterial strains, E. coli, P.
aeruginosa, S. aureus, and B. megaterium, and the
Kirby Bauer disc diffusion method. The procedure
was followed according to Kotakadi et al [38, 39].

Bacterial cultures of the above bacteria were
prepared, 100 pL of these cultures were spread on
nutrient agar plates, and then sterile Whatman Grade
1 filter paper discs were placed on the nutrient agar
plates. The amounts of bark extract of S. mahagoni
and green synthesized Sm-AgNPs deposited on the
sterile discs were 20 and 40 pg, respectively.
Amoxyclav (30 pg, Himedia SD063) discs were used
as the standard antibiotic. Nutrient agar plates loaded
with the bark extract of S. mahagoni, Sm-AgNPs, and
antibiotic were incubated at 37 °C overnight. In the
next day, the zone of inhibition (ZOI) was calculated,

and photographs were acquired for further analysis.

Colorimetric detection of Cr(VI) by green Sm-
AgNPs

Reduction of chromium (Cr(VI)) by green
synthesized Sm-AgNPs was chosen to quantify the
catalytic activity [40]. The colorimetric detection of
Cr(VI) was carried out by adding 350 pL of Cr(VI) to
650 pL of freshly prepared Sm-AgNPs and observed
for instant coloration or color change. The reaction
mixture was mixed thoroughly and its absorption
spectrum was recorded using the above mentioned
NanoDrop 8000 spectrophotometer in the range of

220-750 nm with a 1 cm path length.

Colorimetric sensor for the detection of Hg*
ions using green Sm-AgNPs

The colorimetric detection of Hg* ions
conducted using green synthesized Sm-AgNPs. The
reaction was carried out as follows: 200 pL of Sm-
AgNPs stock solution, 300 pL of Milli-Q water, and
500 puL of Hg* solution were added to form a reaction
The resulting
equilibrated by stirring on a Vortex machine for an
optimum incubation time and then the UV-Vis
spectrum in the wavelength range of 200-800 nm was
recorded. The protocol was previously described by
Vasileva et al [41].

was

mixture. reaction mixture was

Paper-based sensor detection of Hg* ions
using green Sm-AgNPs

To develop a paper-based colorimetric sensing strip
for Hg* detection, 5 pL of a green synthesized
colloidal solution of Sm-AgNPs was added to
Whatman filter paper No. 1 (pore size is 11 pm) at
and then dried at room
These Sm-AgNP-
immobilized paper strips were used for mercury
detection. For this experiment, mercury solutions of

eight different spots

temperature for 15 min.

https://www.sciopen.com/journal/2150-5578
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varying concentrations (100, 50, 10, and 1 mmol/L)
and (100, 50, 10, and 1 umol/L) were dispensed shot-
wise (shot volume is 5 pL) at an interval of 1 min on
four different Sm-AgNP spots in the sensing test line
(T line) until spot discoloration was observed. The
volume of mercury solution consumed to achieve
discoloration of the Sm-AgNP spot was noted for all
the concentrations. For the control experiments,
deionized (DI) water, i.e., an equivalent volume of
mercury solution consumed to achieve discoloration
of the spot, was added to the Sm-AgNP spot in a shot-
wise fashion (shot volume is 1 pL) in the control line
(C line). The experiment was done according to the
protocol of Nain et al. [16] with a slight modification
suitable to our lab conditions.

Results and Discussion

UV-Vis spectral analysis of Sm-AgNPs

The detection of green synthesized AgNPs and other
metal nanoparticles can be easily analyzed via
UV-Vis spectroscopy. In this study, the results
revealed thatthe bark extract of S. mahagonireducedthe
0.2 mol/L silver nitrate solution to an ionic form of
Ag'. This reduction is visually confirmed by the
colorless reaction solution changing to a dark
brownish color (Fig. 2). The green synthesized
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AgNPs, thus named as Sm-AgNPs, consists of free
electrons, which gives rise to the SPR absorption
peak present in the UV—Vis spectral analysis. The
SPR peak of green synthesized Sm-AgNPs was
obtained at 430 nm (Fig. 3). Metal nanoparticles can
be synthesized by various physical and chemical
methods using organic chemicals which are highly
toxic, expensive, and time consuming to prepare. To
avoid the use of toxic chemicals and environmental
contamination, scientists have developed a simple,
rapid method known as “green synthesis” of metal
nanoparticles using various parts of plants and their
extracts as reducing agents for the generation of metal
nanoparticles. Green synthesized AgNPs have been
prepared from the different parts of plant extracts
such as the leaf extracts of Melia dubia [42], Argeria
nervosa [36], Flemingia wightiana [43], Amaranthus
viridis [31], and Achyranthus aspera [44]; fruit
extracts of Ficus carica [1], Tinospora cordifolia [45],
and Terminalia belarica [46]; and insectivorous plant
extract of Drosera spatulata [35], and all these
AgNPs have a similar SPR band in the range of
410—-450 nm comparable to that of the biosynthesized
AgNPs in this study. The results are shown in Table 1.

FTIR analysis of biosynthesized Sm-AgNPs

FTIR spectroscopy is a unique technique which is
used to obtain infrared spectra of absorption,

—— Sm-AgNPs

—— Sm bark extract

(430, 0.247)

0.00 Xﬁn_-

-0.25 |

220 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 748
Wavelength (nm)

Fig. 3 UV—Vis spectra of S. mahagoni bark extract and Sm-AgNPs.
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Table 1 Comparison of SPR and size of AgNPs by various plant extracts
Plant Plant source Method SPR band (nm) Size (nm) References
M. dubia Leaf Green synthesis 380-450 20-40 [42]
A. nervosa Leaf Green synthesis 421 10-50 [36]
F. wightiana Leaf Green synthesis 380, 460 20-40 [43]
A. viridis Leaf Green synthesis 422 55.8 [31]
A. aspera Leaf Green synthesis 445 20-40 [44]
F. carica Fruit Green synthesis 446 (10£5)(35%5) [1]
T. cordifolia Fruit Green synthesis 431,421 30—(35+1),30—-(35.8+1) [45]
T. belarica Fruit Green synthesis 430 46.5 [46]
D. spatulata Whole plant Green synthesis 427 23+£2 [35]
S. Mahagoni Bark Green synthesis 430 35.8-47.8 Present study
emission, and photoconductivity of solids and  antraquinones, phospholipids, alkaloids, phenols,

colloidal solutions. FTIR analyses of the bark extract of
S. mahagoni and green synthesized Sm-AgNPs are
shown in Figs. 4(a) and 4(b). The bark extract of S.
mahagoni exhibited FTIR peaks at 3904.93, 3 845.05,
3372.18, 2956.65, 1612.63, 1518.01, 1434.90,
1257.52, 1111.47, 1038.07, 789.92, 730.56, and
695.26 cm™. The peak at 3372.18 cm™ corresponds to
the O—H stretching of free hydroxyl alcohols and
phenols. The peak at 2956.65 cm™ represents C=C,
and the peak at 1612.63 cm™ is due to the N—H bond
of primary amines and C= C and stretching of
alkenes and aromatic groups. The peak at 1518.01
cm™ corresponds to the N—H bending of alkyl
halides. The peak at 1434.90 cm™ is due to the
stretching of —-C= O in inorganic carbonate. The
peaks at 1257.52 and 1 111.47 cm” are due to
C—O—C of the CO group in lactones. Finally, the
peaks at 730.56 and 695.26 cm™ are due to the C—H
groups of aromatic C—H bonds. The FTIR analysis of
green synthesized Sm-AgNPs revealed several
prominent peaks after reduction such as 3346.67,
1636.81, 1023.77, and 634.31 cm™'. The peak at
3 346.67 cm™ is due to the O—H bonds of alcohol
and phenols; the intensity of this peak decreased after
the addition of Sm-AgNPs compared to that of the
bark extract. The peak at 1 636.81 cm™ corresponds to
the stretching and bending of N—H by primary
amines and alkenes of the aromatic groups. The peak at
1023.77 cm™ is due to the S= O stretching of
sulfoxide. Finally, the peak at 634.31 cm™ is due to
the C—I stretching of aliphatic iodo compounds and
C-Br stretching of halo compounds. An analysis of
the FTIR data clearly illustrates that different
bioactive compounds were present in the aqueous
bark extract of S. mahagoni, such as flavonoids,

saponins, terpenoids, cardiac glycosides, volatile oils,
long chain unsaturated acids, and 45 limonoids
(swietenolide, swiemahogin A, and swiemahogin B);
these compounds are actively involved in the
reduction of silver nitrate to Sm-AgNPs by capping
and stabilization. Various other plant materials have
been used to synthesize AgNPs by green methods,
suchasA. viridis [31], D. spatulata[35],A. nervosa[36],
F. wightiana [43], and fruit extracts of 7. cordifolia [45]
and T. belarica [46]; FTIR analysis in these studies
also indicates that bioactive components such as
flavonoids, tanins, phenols, saponins, terpenoids,
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Fig. 4 (a) FTIR analysis of S. mahagoni bark extract. (b) FTIR
analysis of Sm-AgNPs.
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phospholipids, alkaloids, glycosides, and proteins are
present in the extracts and actively involved in the
reduction and stabilization of nanoparticles.

Particle size analysis of green synthesized
Sm-AgNPs

The size of green synthesized Sm-AgNPs was
detected using the DLS method (Fig. 5(a)). The
results reveal that the size of green Sm-AgNPs was in
the range of 35.8—47.8 nm with an average mean size
of 41.3 nm and a Z average of 37.7 nm. This result

35.8 nm, 50% were less than 42.8 nm, and 90% were
less than 47.8 nm, indicating that green Sm-AgNPs
were polydisperse with a polydispersity index (PDI)
of 0.169.

Zeta potential analysis of green synthesized
Sm-AgNPs

The zeta potential analysis of green Sm-AgNPs
reveals that the particles were negatively charged.
The net surface charge of green Sm-AgNPs was

approximately —19 mV, as shown in (Fig. 5(b)),

reveals that 10% of Sm-AgNPs were less than indicating that these samples were stable
100
(a) J
45+ | H 50
40 i H 80
35+ . H70
g 30 | 160 &
s | g
5 1% 2
2 3
(5] -
220 H40 5
15+ 130
10 || {20
5 F 110
0 1 hoak e dodododd A L sall L Aol Lddl
0.1 1 10 100 1000 10000

Diameter (nm)

Calculation results

Peak No. | S.P. area ratio Mean S.D. Mode
1 1.00 413 4.1 414 Cumulant operations
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3 — — — — PI :0.169
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Peak No. Ztea potential Electrophoretic mobility
1 -19.0 mV 0.000098
2 — —
3 — —
Zeta potential (mean) :—19.0 mV
Electrophoretic mobility mean :=0.000098 cm?/Vs

Fig. 5 (a) Particle size (DLS) analysis of Sm-AgNPs. (b) Zeta potential analysis of Sm-AgNPs.
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nanoparticles in the aqueous colloidal form. Zeta
potential is an important physical property which
reveals the net surface charge of Sm-AgNPs; this
value indicates that the nanoparticles were well
dispersed without any agglomeration.

SEM and EDS analysis of green synthesized
Sm-AgNPs

The morphology and size of green Sm-AgNPs were
observed using SEM, and the size of Sm-AgNPs were
in the range of (30 £ 2-50 + 2) nm with a roughly
spherical shape and an average size of (47 £ 2) nm
(Fig. 6(a)), which agreed with the DLS data. A
similar result was observed in an earlier study [17].

The elemental composition of green Sm-AgNPs
was determined using EDS, and the highest
proportion peak of Ag was obtained at 3.0 keV,
followed by some minor peaks of C, O, and Cu and
major peaks of Ag and Si. The high peak of Si is due
to depositing Sm-AgNPs on a glass slide. EDS data
show the mass percentages of elemental Ag, Cu, C,
0O, Na, Mg, and Ca were 36.19%, 8.86%, 16.25%,
24.45 %, 14.70%, 11.06%, and 13.72%, respectively

(Fig. 6(b)).

Antibacterial activity of green synthesized
Sm-AgNPs

The antibacterial activity of green synthesized Sm-
AgNPs was determined against both Gram-negative
and Gram-positive bacterial strains. The results
confirm that green Sm-AgNPs had an exceptionally
good antibacterial activity. The ZOI values of Sm-
AgNPs against four different bacterial species at
amounts of 20, 30, and 40 ug along with those of the
bark extract of S. mahagoni and standard antibiotic
Amoxyclav (30 pg, Himedia-SD063) are shown in
Fig. 7, and the ZOI values measured are tabulated in
Table 2. Green Sm-AgNPs had a very good
antibacterial activity compared with that of 30 pg of
Amoxyclav. The bark extract did not have any
activity, whereas Sm-AgNPs had an excellent activity
with an increase in amount from 20 to 40 pg when
compared with that of the standard antibiotic, as
shown in Fig. 7. In earlier studies, metal nanoparticles
established their antimicrobial activity. Among the
metal nanoparticles, AgNPs are known to have an
excellent antimicrobial activity against
bacterial species. Presently, several bacterial strains
have developed antibiotic resistance due to the
prolonged use of antibiotics, which causes a severe
illnesses and diseases in humans.

various
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Fig. 6 (a) SEM iamage of sm-AgNPs, (b) EDS analysis of Sm-
AgNPs.

Therefore, researchers have focused on the
development of novel therapeutics agents which can
combat antibacterial resistant strains. Several
scientists have developed green synthesized AgNPs
by using various plant parts such as leaves, roots,
fruits, and bark which have an excellent antimicrobial
activity. The size and shape of AgNPs play important
roles in their antibacterial activity. When AgNPs
contact the bacterial cell wall, they attach to the cell
wall surface, disturb the cell wall, enter into the
bacterial cell, and disturb bacterial cell permeability
and respiration. AgNPs induce DNA damage by
reactive oxygen species (ROS), which leads to
uncontrollable ion transport through the cell
membrane. In addition, Ag" ions also bind to tissues
and proteins, which precipitates them and obstructs
small vessels, leading to bacterial cell death [38, 39].
In conclusion, Sm-AgNPs exhibited a very good
antibacterial activity due to their small size from 37 to
49 nm, and nanoparticles are clearly of biomedical
importance.

Colorimetric detection of Cr(VI) using green
Sm-Ag NPs

The results revealed that the green synthesized
colloidal solution of Sm-AgNPs had a strong SPR band.
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Escherichia coli

Pseudomonas ageruginosa

Fig. 7 Antibacterial activity of Sm-AgNPs.

Table 2 Anti microbial activity of Sm-AgNPs

ZOI (mm)
Sample Extract 5 WL 30uL 40 L ﬁ;lézﬁzlt;
Q0pg) (Owp) @ong) e
E. coli — 10 16 24 14
P. aeruginosa — 5 19 23 14
S. aureus — 11 20 30 12
B. megaterium — 10 21 26 17

1 mmol/L Cr(VI) stock solution was prepared for this
experiment. The maximum optical density (OD) was
8.369 at 360 nm, whereas the maximum absorbance
decreased to 2.504 OD after the addition of Sm-
AgNPs to the 1 mmol/L Cr(VI) solution, which
indicates the interaction of AgNPs with the chromium
solution; the color of Cr(VI) changed from orange to
dark purple. The results are shown in Fig. 8(a).
Similar results were observed using hexavalent
chromium (Cr(VI)) and biosynthesized fig fruit (FF)-
AgNPs polyvinylprrolidone (PVP-FF-AgNPs) [1],
biogenic Pd(0) nanoparticles [47], and AgNPs
biosynthesized from a leaf extract of Anacardium
occidentale [48]. Inorganic nanoparticles act as a
catalyst and reducing agent of hexavalent chromium,
and the use of inorganic nanomaterials/nanoparticles
in the nano-catalyzed reduction of Cr(VI) has
attracted a significant attention [49].

Colorimetric sensor detection of Hg* ions
using green Sm-AgNPs

The optical and colorimetric detection of Hg*" ions
due to the interaction of Sm-AgNPs with Hg** ions

resulted in a visible color change of Sm-AgNPs from
yellow to colorless at high concentrations more than
10 pumol/L (Fig. 8(b)). Further studies at lower
concentrations did not produce a visible color change,
but an optical change was measured by the UV-Vis
spectrophotometer. The disappearance of the
characteristic absorption peak of Sm-AgNPs was
observed, resulting in a clear solution with zero or
nearly zero absorbance intensity. Similar results were
observed in starch-functionalized AgNPs which were
used to detect Hg* ions in tap water [50]. Another
previous study revealed that cysteine-modified
AgNPs can also act as a probe for the selective
colorimetric detection of Hg* [51]. Most studies
reported that surface coated or modified AgNPs were
used in the colorimetric detection and reduction of
Hg*. In this study, we used unmodified green Sm-
AgNPs directly for the colorimetric detection of Hg*".
Unmodified nanoparticles are rarely reported [52].
Therefore, we reported that unmodified green Sm-
AgNPs were very efficient in the colorimetric sensing
of Hg*". In future studies, these green Sm-AgNPs can
be used as colorimetric probes for sensing different
lethal metal ions in environmental samples.

Paper-based sensor detection of Hg* ions
using green Sm-AgNPs

In this study, a Sm-AgNP probe with application to
Hg sensing was investigated to improve detection in
the field. We developed a Whatman filter paper-based
sensing strip, and the photographic image shown in
Fig. 8(c) exhibited the disappearance of the yellow
spots of Sm-AgNPs (sensing line) in contrast to the
control sample (control line). Different mercury
solution concentrations of 100, 50, 10, 1, 100, 50, 10,
and 1 umol/L were used for the discoloration of Sm-
AgNPs. The discoloration was dependent on the Hg*
solution concentrations. Sm-AgNPs spots were
colorless after the addition of 5 puL (100 mmol/L),
12 pL (50 mmol/L), 18 puL (10 mmol/L), and 24 pL
(1 mmol/L) in the first reaction on Whatman paper, as
shown in Fig. 8(c). In addition, a larger volume of
Hg*" solution was required at lower concentrations;
specifically, 40, 80, 120, and 240 pL volumes
required concentrations of 100, 50, 10, and 1 umol/L,
respectively, in the second reaction on Whatman
paper (Fig. 8(c)). All the control samples exhibited no
visible change in the yellow color of Sm-AgNP spots.
Finally, as the concentration of mercury decreased,
the required sample volume and discoloration time
increased. This result is due to the decreased
availability of mercury ions, which decreases the
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Fig. 8 (a) Colorimetric detection of Cr(VI) using green Sm-AgNPs, (b) Colorimetric/optical sensor detection of Hg*" ions using
green Sm-AgNPs and (c¢) Paper-based sensor detection of Hg** ions using green Sm-AgNPs.

reaction rate. The paper-based sensor strip could
detect 100 mmol/L of mercury ions within 45 min. A
lower concentration of 1 mmol/L required 2 h. Thus,
visible detection was easily achieved in the present
experiment. Similar results were reported by Nain
et al. [16] and Han et al [53]. There are few
comparable studies, but a recent study was carried
using Achillea wilhelmsii extract-mediated silver
nanoparticles (Aw-AgNPs) in Hg** sensing in solution
and on a paper substrate [54]. The development of
simple paper-based tools will decrease the complexity
of sensors and cost of assays, leading to lethal metal
samples decreasing to parts per million and parts per
billion levels.

Conclusion

In this study, we report a simple and rapid method for

the green synthesis of AgNPs using the bark extract
of S. mahagoni. The results reveal that the green
synthesized Sm-AgNPs have important biomedical
and industrial applications. The green Sm-AgNPs
were characterized by different spectroscopic
methods and evaluated antimicrobial and
toxicological applications like dual sensing of Hg*
ions and toxic Cr(VI) reduction. The SPR spectra of
Sm-AgNPs were obtained at 430 nm and FTIR
analysis revealed that various bioactive molecules of
the bark extract actively participated in the reduction
and stabilization of Sm-AgNPs. The SEM analysis
revealed that Sm-AgNPs were roughly spherical in
shape, and EDS data revealed that Sm-AgNPs were
completely reduced to elemental silver. The particle
size analysis revealed that the green synthesized Sm-
AgNPs were polydisperse with an average particle of
41.3 nm, a Z average of 37.7 nm, and a PDI of 0.169.
The zeta potential of Sm-AgNPs was —19 mV, which

in
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indicates stable colloidal nanoparticles. Furthermore,
the green synthesized Sm-AgNPs were evaluated in
biomedical and industrial applications, and these
materials had a very good antibacterial activity
against both Gram-positive and Gram-negative
bacteria. These nanoparticles were also useful in the
colorimetric detection of Cr(VI) by reduction with
Sm-AgNPs. Green Sm-AgNPs proved to be an
effective dual sensing agent of Hg?* ions using both
optical and paper-based biosensor methods. Finally,
Sm-AgNPs can be very useful in the development of
novel, simple, and low cost biosensors for the
efficient detection of mercury and reduction of
chromium.
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