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Abstract

Nanomaterials play a crucial role in the biomedical field, and with the rise of the digital era, artificial
intelligence (AI) has become a valuable tool in all stages of nanomaterial development, spanning from
design to synthesis and characterization. In this review, we explore recent advancements in the field of
Al-driven nanomaterials. Firstly, we delve into how Al can be leveraged in material design, utilizing
vast databases to develop new materials. Secondly, we discuss intelligent synthesis, where Al
algorithms are employed to optimize the synthesis process. Subsequently, we explore how to
efficiently extract depth information from nanomaterial characterization results using Al-based
methods. Lastly, we offer a glimpse into the future of biomedical nanomaterials, highlighting the

potential impact of Al in this rapidly evolving field.

Keywords: artificial intelligence (Al); biomedical nanomaterials; nanomaterials design; machine

learning; high-throughput

Introduction

Biomedical nanomaterials represent a category of
medical materials specifically designed, synthesized,
or enhanced at the nanoscale [1, 2]. These
nanomaterials possess distinct biological properties
and functions, making them valuable for disease
detection [3], treatment [4], and prevention [5] at the
cellular level. Capable of precisely controlling the
structure and characteristics of nanomaterials at the
nanoscale, they have great potential applications in
biological systems [6].
scientists often gather property data of nanomaterials

In experimental research,

through extensive experiments and characterizations,
continually optimizing parameters to achieve the
optimal material state. On the computational side, to
gain deeper insights into nanomaterials, key
material descriptors are gathered to support the
generalizability of the designed computational
models [7-9].

Artificial intelligence (Al) is a scientific field
dedicated to researching and developing computers
capable of simulating emulating human
intelligent behavior. Al algorithms enable computers

and

to perform tasks that traditionally demand human

intelligence, such as learning, reasoning, and
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problem-solving [10]. The umbrella of artificial
intelligence  encompasses a
technologies and methods,

wide array of
including machine
learning [11], deep learning [12], computer vision
[13], natural language processing [14], and more.
These sophisticated technologies empower computers
to discern patterns through data analysis and make
intelligent

intelligence has made significant inroads into the field

decisions. In recent years, artificial
of materials science, emerging as an indispensable
tool for its development. The participation of Al
reduces the need for trial-and-error experiments
required in the design process [15-17], aids in
identifying the most suitable synthesis route [18, 19],
and extracts in-depth information from the
characterization results [20-23]. By quantitatively
analyzing the synthesis, characterization and other
parameters involved in different stages, Al has played
an important role in the fields of design, synthesis,
and characterization analysis based on its unique

modeling and prediction performance.

In this focus on the recent
developments of artificial intelligence in the field of

biomedical nanomaterials. As shown in Fig. 1, the

review, we

review primarily covers three key aspects: material
design, intelligent synthesis and characterization
analysis. In the materials discovery and design phase,
Al algorithms play a vital role in facilitating the
design of novel materials with desired properties. By
analyzing big databases of material properties
[24-26], Al patterns,
correlations, and feature descriptors [27], aiding in
the creation of optimized materials. During the

and structures identifies

synthesis stage, artificial intelligence is employed in
optimizing and automating the material synthesis
process by learning from experimental conditions and
[28]. This not
efficiency of synthesis but also reduces the need for
trial and stage,
Al-driven technology proves
invaluable. By analyzing and interpreting data from
microscopes and other characterization tools [29], Al

parameters only enhances the

error. In the characterization

computer vision

helps identify material structures and extracts crucial
depth information, offering deeper insights into
These
material assessment and selection, aiding in the
discovery of materials with superior performance.
Moreover, the review delves into how Al can be used

material properties. approaches expedite

to extract information and contribute to materials
synthesis within a data-driven context, presenting

various real examples at different synthesis stages.
Finally, the review concludes with an outlook on the
future research directions of Al in the realm of
biomedical nanomaterials science. We believe that Al-
based algorithms will play a crucial role in propelling
nanomaterials science into rapid development within
the data-driven era.

Artificial
intelligence

Biomedical
nanomaterials

| Design ” Synthesis H Characterize |

Fig. 1 The application direction of artificial intelligence in
biomedical nanomaterials.

Biomedical Nanomaterials

As shown in Fig. 2, the research content of
biomedical nanomaterials mainly includes medical
detection and diagnosis [30-32], therapeutic drugs
[33, 34], and functional nanomaterials (such as
nanomaterials for imaging [35], antibacterial [36] and
drug delivery [37]). Common types of biomedical
nanomaterials encompass carbon-based nanomaterials
[38—40], inorganic nanomaterials [41-43], organic
polymer nanomaterials [44, 45], and nanocomposite
[46]. In the field of tissue engineering, biomedical
nanomaterials can be used as substrates for cell
growth and proliferation, and deliver drugs and
biomolecules, eventually creating new tissues or
organs under controlled conditions to replace
damaged body parts [47-49]. For example, Castro et
al. improved the mechanical and osteoconductive
properties by adding silica nanoparticles (NPs) to the
electrospun poly(e-caprolactone) (PCL) membrane
for guided bone regeneration [50]. Nanomaterials as
drug carriers in drug delivery systems allow for more
long-term and sustained drug delivery [51-54]. For
example, Au NPs are effective nanocarriers for
various drugs such as peptides, plasmid deoxynucleic
acid (pDNA), proteins, small interfering ribonucleic
acids (siRNAs), and chemotherapeutic agents [52]. In
addition, nanomaterials can provide high-resolution,
high-contrast images for precision medicine and play
an important role in bioimaging applications [55, 56].
Among them, iron-based magnetic nanomaterials
have the most extensive applications due to their own

https://www.sciopen.com/journal/2150-5578
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Fig. 2 The significant application and types of biomedical nanomaterials.

imaging effect [57], and can be used in magnetic
resonance imaging (MRI) [58] and magnetic particle
imaging (MPI) [59]. Leveraging the distinctive
physical, chemical, and biological properties,
biomedical nanomaterials play a pivotal role in
disease treatment and biological research, leading to
innovative breakthroughs and advancements in
medical science.

To comprehensively evaluate and study the
morphology,  structure, and  properties  of
nanomaterials, various characterization methods are
available at different levels. Microscopic techniques
like scanning electron microscope (SEM) and
transmission electron microscope (TEM) are utilized
to observe the surface and internal structure of
materials [60]. X-ray diffraction (XRD) techniques
aid in analyzing the crystal structure
materials [61], while Raman spectroscopy and
Fourier transform infrared spectroscopy (FTIR)
provide chemical information [62].
Thermogravimetric  analysis (TGA) [63] and
differential scanning calorimetry (DSC) [64] are
employed to investigate the thermal properties of
materials. The characterization toolbox  for
nanomaterials includes several other methods as well.
In practice, the comprehensive application of these
diverse  techniques  enhances the  in-depth
understanding of the structure and properties of
nanomaterials during the characterization process.

within

valuable

Nanomaterials Design

The development and research of nanomaterials often
involve numerous repetitive experiments or complex
molecular dynamics simulations. However, artificial
intelligence offers a transformative solution by
enabling big data analysis and high-throughput

screening. This utilization of Al not only accelerates
materials design but also enhances nanomaterial
synthesis efficiency and quality. The nanomaterial
design process typically involves three steps [65]:
Firstly, conducted, where

materials in the dataset are represented using a set of

data preparation is

feature descriptors. Notably, noise in the dataset is
eliminated with the aid of domain-specific expertise
in materials science [66, 67]. In the second step, a
mathematical model is created to establish the
mapping between features and targets based on
available data, which may include complex neural
networks encompassing both linear and nonlinear
components [68, 69]. Finally, the designed model is
employed for reverse design to create the desired
materials, streamlining and optimizing the entire
materials design process [70, 71].

In the nanomaterials design stage, high-throughput
experimental data play a crucial role in enabling
space
exploration. For instance, Chan et al. proposed a

combinatorial ~ synthesis and chemical
reproducible, high-throughput synthesis method for
colloidal nanocrystals, offering a systematic approach
to efficiently explore multidimensional parameter
spaces [72]. This approach empowers researchers to
optimize the obtain

synthesis  process and

nanocrystals with desired properties,
reproducibility and scalability. Likewise, Kajita et al.

developed an

ensuring

ensemble descriptor approach,
combining machine learning with high-throughput
screening, to efficiently identify potential superionic
conductors from extensive material databases [73].
Despite having a small training dataset of [29], the
method maximizes These

examples demonstrate the utility of machine learning

inference capacity.

and high-throughput data in exploring the design of
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new materials. The same principle can be applied to
high-throughput screening of biomedical
nanomaterials, after identifying appropriate and
efficient descriptors. For example, Yamankurt et al.
identified approximately 1 000 spherical nucleic acids
(SNA) candidates based on reasonable ranges of
design parameters that could be systematically and
independently varied to optimize SNA performance.
They developed a high-throughput screening protocol
to test the activity of SNA-close nano formulations
and used the obtained results to train a machine
learning algorithm to predict the activity of new SNA
formulations [74].

Defects play a crucial role in the properties of
nanomaterials and can be categorized into point
defects, line defects, and surface defects. However,
analyzing structural defects in materials is often
challenging and time-consuming, requiring advanced
like high-resolution

characterization instruments

transmission electron microscopes. Despite the
difficulty in detecting defects, nanomaterials with
defects may exhibit excellent optical and physical
properties, including enhanced redox reaction
abilities [75]. To better understand how defects
influence the performance of nanomaterials, as shown
in Fig. 3, Wu et al. constructed a library of 425
metal-organic frameworks (MOFs) with defects. The
decision tree and logistic regression models are
trained for using this dataset to gain insights into the
impact of defects on MOF materials [76]. In the
process of characterizing nanomaterials, deep
learning can also realize rapid identification and
classification of defects in microscopic images, which
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will be described in detail later. These works have
deepened researchers' understanding of defects and
structural transitions in nanomaterials, which are
crucial for designing nanomaterials with special
functions.

The inverse design method is driving the design of
nanomaterials towards being performance-oriented,
which involves tailoring the structural parameters of
materials to achieve specific functionalities or
characteristics. Li et al. introduced a novel approach
for inverse design using random forest multi-
objective regression, showcasing the ability to predict
structural features based on desired properties [77].
By employing algorithms capable of addressing
multiple targets simultaneously, they explored the
vast design space of multifunctional nanoparticles
and identified optimal combinations of structural
parameters that meet specific performance criteria.
Similarly, Thomas et al. utilized a decision tree
algorithm to investigate the immune response of
nanoparticles, specifically focusing on how the
physicochemical properties of nanomaterials, such as
size and zeta potential, can influence the activation of
the complement system [78]. Understanding these
relationships is crucial for developing safe and
biocompatible nanomaterials, as it provides valuable
insights into tailoring nanoparticle properties to
minimize potential immune responses. Boso et al.
used artificial neural networks to predict the number
of fluorescent polystyrene nanoparticles attached to
the container wall as a function of wall shear rate and
nanoparticle diameter. Based on this function, the size
of the nanoparticles was reverse engineered. In this

v
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Fig. 3 Flowchart of the method for defect classification in MOFs based on deep learning and decision tree. © 2020 American

Chemical Society.
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work, it was shown that there is an optimal particle
size that maximizes the number of nanoparticles that
adhere to the implying that
nanoparticles are able to maximize nanoparticle

container walls,
accumulation at diseased sites [79]. These studies
exemplify the power of inverse design and data-
driven approaches in advancing nanomaterials
research and tailoring nanomaterials for specific
applications with enhanced performance and

biocompatibility.

Intelligent Synthesis

In the synthesis stage of biomedical nanomaterials,
artificial intelligence plays a vital and indispensable
role, significantly enhancing the efficiency and
intelligence of the synthesis process. The properties
and performance of materials are closely tied to the
fabrication parameters used during synthesis [80].
Artificial intelligence at this stage is primarily
focused on optimizing and designing synthesis
parameters. Researchers have leveraged machine
learning algorithms to optimize the synthesis of
biomedical nanomaterials. Barnard et al. used 14
different machine learning algorithms to describe and
optimize 4 000 different synthetic routes for Au NPs
using 5 different feature sets [81]. Furthermore,
Wilbraham et al. introduced the concept of a chemical
processing unit (CPU),
integrates and automates various aspects of chemical
processes [28]. The CPU enables high-throughput
experiments, enabling rapid screening of a large

a digital platform that

number of reaction conditions to determine the most
favorable reaction routes for nanomaterial synthesis.
This modular approach to describing chemical
reactions represents a novel and efficient method,
marking a  significant
mathematization of chemistry. It opens up new
possibilities  for efficiency, and
reproducibility  in research  and

milestone in the

innovation,
chemical
development.

Microbial synthesis is an eco-friendly and cost-
effective method for the synthesis of biomedical
nanomaterials [82, 83]. Due to the involvement of
various biochemical reactions and biological
mechanisms, it is essential to study the biosynthetic
capabilities of microorganisms and develop methods
to regulate and control the synthesis of nanomaterials

to achieve more efficient and controllable outcomes.

Conversely, the nanoparticles synthesized by
different microorganisms can serve as unique
identifiers for distinguishing between different
microbial species. Yu et al. demonstrated the

application of machine learning techniques to analyze
and interpret the biosynthesis patterns of gold
nanoparticles produced by various microbial species
[84]. By training a machine learning algorithm on a
dataset of biosynthesis patterns and associated
taxonomic information, the system successfully
identified and classified unknown microbial samples
based on their gold nanoparticle biosynthesis. This
innovative strategy holds great potential for diverse
applications,

medical diagnosis, and biotechnology. By harnessing

such as environmental monitoring,

the combined power of microbial synthesis and
machine learning, researchers can achieve more
precise and efficient microbial identification,
contributing to advancements in multiple fields that
rely on accurate microbial taxonomy and the

synthesis of nanomaterials.

Researchers in the field of nanomaterial synthesis
characterization  of
synthesized materials to understand their properties

often conduct extensive

before attempting to improve the experimental
synthesis process. Al has emerged as a powerful tool
to optimize synthesis parameters by analyzing and
characterizing the results obtained from various
experiments. Yao et al. developed an automated
analysis workflow that utilizes nanomorphology to
link synthetic conditions to properties by quantifying
information in TEM image datasets [85]. They
employed convolutional neural networks and
unsupervised learning models to quantify and classify
nanomorphology in three different systems. This
approach revealed the synthesis-nanomorphology
identifying both the diversity and

similarity of nanomaterials under different synthesis

relationship,

conditions. This work sheds light on how synthesis
development  of
nanomorphs, opening the possibility for Al to

parameters  influence  the
enhance nanomaterial synthesis and better understand
and control complex nanomorphologies. Jiang et al.
proposed a fully autonomous chemical synthesis
robot capable of exploring the multi-step synthesis of
gold nanoparticles via online ultraviolet—visible
(UV-Vis) characterization [18]. By using a mass
diversity algorithm, three interrelated chemical spaces
were explored, and gold nanoparticles with diverse
characteristics were discovered, including spheres,

https://www.sciopen.com/journal/2150-5578
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rods, spherical, stars and so on. Au NPs are an
important
biomedical applications

of functional nanomaterials in
[86]. In this work, the
synthesis process is output in a common format using
a chemical description language and analytical data to
generate

class

unique digital signatures, enabling

reproducibility of design synthesis.

The reproducibility of nanomaterial synthesis is
indeed a critical challenge in the transition of
biomedical nanomaterials from the laboratory to the
market. To address this issue, researchers have been
exploring various controllable synthesis approaches,
with microfluidic platforms
prominent methods [87, 88]. Guda et al. conducted
systematic

being one of the
investigations on the controllable
synthesis of gold nanoparticles with specific sizes and
shapes [89]. They studied the effects of different gold
precursors, reducing agents, and surfactants on the
formation of gold nanoparticles. By employing
modified Latin hypercube sampling, they selected
experimental points in the response parameter space
and varied the variables of HAuCl,-4H,0, ascorbic
acid, and hexadecyltrimethylammonium bromide
(CTAB). This approach enabled the preparation of
gold nanoparticles in spherical or elongated shapes,
and the in-situ reactions were monitored using
UV-Vis spectroscopy. This study helps researchers
gain a deeper
interactions among reaction parameters, enabling the
rational tailoring of the synthesis process to achieve

understanding of the complex

desired properties and achieve controllable synthesis.
As shown in Fig. 4, Ferreira et al. developed an
impedance millifluidic sensor based on machine
learning data processing to monitor the 24-hour
synthesis  of nanoparticles [90]. By
continuously monitoring the reaction, they obtained

silica

detailed information on the kinetics of formation,
particle size distribution, and other key parameters
that influence the properties of the resulting silica
nanoparticles. This real-time monitoring approach
provides researchers with valuable insights into the
synthesis process, enabling them to more precisely
control nanoparticle synthesis and develop high-
quality and reproducible nanoparticles with desired
properties. These innovative approaches demonstrate
how controllable synthesis methods and real-time
monitoring  techniques, driven by
intelligence and machine learning, can help overcome

artificial

the challenge of reproducibility in nanomaterial
synthesis.

PP EPRTTT PRTIT WPRTrTS Searrre e |

Fig. 4 The impedance millifluidic sensor based on machine
learning data. © 2022 American Chemical Society.

Characterization Analysis

Information extraction from nanomaterials'
characterization results is a valuable tool that enables
researchers to gain a deeper understanding of
materials and uncover hidden patterns and features
within them. Nanomaterials' characterization data
comes in various forms [91], such as images from
TEM or from UV-Vis absorption
spectroscopy. Artificial intelligence plays a pivotal
role in automatically identifying and classifying
nanostructures, crystal structures, and morphology
This

characterization method assists in the interpretation of

curves

information in the samples. intelligent
experimental results, making it easier for researchers
to analyze complex data and extract meaningful

insights.

The information about the size, shape, surface, and
other characteristics of nanoparticles is crucial for
understanding materials and is typically obtained
through microscopy. Different microscopes have
varying resolutions, which affects the level of
information that can be obtained. For instance, optical
microscopes can provide size and shape information,
TEM can
crystallographic details of materials [92]. Recent

while  high-resolution capture
advancements in Al methods have been applied to
automate and expedite the analysis of microscopic
images. For example, Xu et al. established a machine
learning model using images acquired by a defocused
scanning optical microscope on a traditional optical
microscope to accurately determine the size of silver
[93]. Their
estimation error of less than 5%

nanoparticles method achieves an

for individual

https://www.sciopen.com/journal/2150-5578
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particles, enabling accurate visualization of particle
size distributions, even for complex samples with
broad size variations. Due to the higher resolution of
TEM, it is more widely used in nanomaterial
characterization due to its capability to provide more
depth information, such as defects [94] and space
groups [95]. Groschner et al. have designed automatic
analysis methods, like combining U-net [96] and
random forest models [97], to segment nanoparticles
in high resolution TEM (HRTEM) images and
predictively classify different defect types in the
[98]. Additionally, group have
developed automatic frequency domain information
analysis the U-net model,
successfully analyzing lattice fringe information in
HRTEM images through information calibration and

particles our

systems based on

Fourier transform calculation [99]. This method has
been effectively applied to iron oxide nanomaterials.

SEM is a valuable tool for obtaining high-
topological
information of nanomaterials, enabling researchers to
study their structure, shape, and size [100]. As the
volume of SEM data increases with the continuous

resolution surface morphology and

development of technology, the analysis capabilities
need to be enhanced accordingly. Researchers have
leveraged deep learning models to automate and
improve the analysis of SEM images. Aversa et al.
annotated a large dataset of 22 000 SEM images and
used a deep learning model to classify them into ten
categories, such as 0D particles, 1D nanowires, 2D
films, and 3D devices [101]. Similarly, Dahy et al.
proposed an intelligent classification model based on
the VGG-19 deep network [102] and a support vector
machine model [103] to classify the shape types of
nanoparticles SEM images, achieving an
impressive accuracy of 97% [104].
Furthermore, researchers have gone beyond shape

in
overall

classification and extracted more comprehensive

information from SEM images using machine
learning. Kim et al. developed a computer vision
algorithm based on machine learning (Fig. 5) to
quantitatively extract particle size, size distribution,
shape, and core-shell structure information from SEM
images [105]. This method offers automated and high-
throughput measurements, even when dealing with
overlapping nanoparticles,

nanostructures.

rods, or core-shell

In fact, for the characterization results of images
such as TEM and SEM, the model design process can
be unified into four steps: data set construction,
training set calibration, model training, and model
verification. By combining artificial intelligence
algorithms to extract information from images, the
analysis results are made faster and more accurate,
especially reducing the analysis errors between
different analysts. The use of artificial intelligence in
nanomaterial characterization can enable more
efficient and reliable data analysis, leading to a
deeper understanding of materials and advancing the

field of nanotechnology.

Optical absorption spectroscopy is an important
characterization method for analyzing the interaction
of light with materials and further
about

properties. However, for nanomaterials, due to their

extracting

information electronic and molecular
complexity, the optical absorption peaks in the
spectrum are difficult to be identified. It is difficult to
identify chemical constituents from absorption
spectra unless special control measures such as size
focusing [106] or high-resolution separation [107] are
employed. By applying a machine learning model
based on a one-dimensional convolutional neural
network, Chen et al. took the UV—Vis absorption
spectrum of metal nanoclusters as a demonstration,
and achieved a good match between the predicted

results and the experimental results and a low mean

Prediction

2 048

Inception-V3 network
trained on ImageNet

| E—

Deep feature extraction Neural network model

for morphology classification

Fig. 5 Deep convolutional neural network-based morphology classification of SEM images. © 2022 Royal Society of Chemistry.
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absolute error value [108]. This work opens the door
to the identification of nanomaterials from their
optical properties with molecular precision, providing
the methodological basis for rapid, high-throughput
characterization.

Future Prospects

In the realm of biomedical nanomaterials, artificial
intelligence has proven to be highly advantageous and
versatile. Its applications span across material design,
intelligent synthesis, and characterization result
analysis, and these algorithms can be adapted for
most nanomaterials. However, how to effectively
apply the algorithm to the actual scene and reduce the
cost and time of the experiment is also an important
problem that needs to be solved. First, in the material
design stage, building large biomedical nanomaterials
databases and specific descriptors is key to improve
algorithm performance.
stage,
versatility of the algorithm is the key issue, which
will enable artificial intelligence to more effectively
support and guide the process of experimental
Third, at the

characterization analysis, it is suggested to design an

Second, in the material

synthesis improving the efficiency and

synthesis. stage of material
algorithm that can comprehensively analyze various
characterization results and design a visual interface
for the algorithm. By making these improvements, Al
can become more accessible and valuable as an
effective auxiliary tool for researchers in the
biomedical domain, fostering its wider adoption and

enhancing its potential impact.

Conclusion

Artificial
advancements and opportunities to the optimization
and exploration

intelligence has brought significant

of biomedical nanomaterials.

Researchers can now obtain information more
rapidly, thanks to the superior efficiency of Al-
assisted methods compared to traditional manual
analysis. The use of large databases and high-
throughput screening for nanomaterial design has
drastically reduced the reliance on trial-and-error
experiments, enabling more efficient development
and design of new materials based on desired
performance. In the material synthesis stage, artificial

intelligence plays a crucial role in making the process

more intelligent and efficient by designing synthesis
reaction parameters. Moreover, Al-driven methods
for analyzing nanomaterial characterization results
aid in quantifying and extracting valuable
information. Overall, the integration of artificial
intelligence in biomedical nanomaterials development
is driving the field towards greater intelligence and
automation. As artificial intelligence continues to
contribute to transformative advances in the ficld, the
rapid development of nanomaterials research and
applications has brought new breakthroughs and

possibilities to the field of biomedicine.
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